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ABSTRACT: Updating industrial facilities to increase the level of
automation and digitalization to match Industry 4.0 paradigms has
become essential for many companies. Following such a trend, this
paper presents a real-time optimization algorithm that plays a
central role in a larger project framework devoted to highly
interconnecting different network components of an Italian
chemical industrial site. The proposed methodology aims at best
managing the production rates of various products to fulfill a sales
plan organized to satisfy numerous client requests. The considered
model takes into account both batch and continuous processes as
well as salable and non-storable products. The algorithm structure
relies on the use of a non-linear optimization scheme and on the
concepts of batch scheduling. Different features of the proposed
methodology have been tested on real plant data, showing how the
predicted forecast always improved the initial operation plan by considering both aspects of feasibility and economic nature. The use
of the proposed algorithm assures the basis for fully integrating the control systems and the selling department of the facility in a
more interactive and responsive manner.

1. INTRODUCTION

Within Industry 4.0 paradigms, both process simulation and
simulation-based optimization have acquired a relevant role in
the definition of the so-called virtual twin of the physical
process.2 In this context, mathematical modeling is not anymore
dedicated to describe an industrial process but also any product
or service on top of which specific analyses and/or suitable
strategies have to be performed.3 Another important aspect
recently taken into consideration involves maintaining a reliable
model by monitoring the process with the appropriate strategies
of data collection.4,5 Even though the Industry 4.0 paradigms
have been formulated quite recently, the approach which deals
with process simulations and optimization is nowadays well-
established and goes under the name of real-time optimization
(RTO).6 The RTO methods exploit process measurements to
run an optimization framework that often, but non mandatorily,
relies on a (possibly inaccurate) process model and data
extrapolated from measurements. Due to their versatility,
process industry applications of RTO strategies nowadays are
multiple and can be found in different fields as managing energy
consumption efficiently7 or optimizing batch and continuous
operations.8

The specific set of applications of RTO methodologies
oriented to optimally manage large and complex industrial

facilities takes the name of process scheduling. Finding the
optimal production strategy to fulfill the sale requirements by
solving scheduling problems is the typical objective. Such a field
of RTO finds applicability in both continuous and batch plants.
Mixed integer linear programming (MILP) models have been
often used in scheduling problems of batch reactor plants9 but
also to deal with inventory management in refinery operations10

or with the organization of a petroleum transportation system.11

For example, cyclic scheduling and operation of optimal
multistage continuous plants are treated in Alle and Pinto.12 A
global optimization algorithm, based on convex relaxation and
branch-and-bound techniques, is here used to address the
nonconvexity present in the considered mixed-integer nonlinear
programming (MINLP) formulation. Scheduling has also been
integrated with control via multiparametric programming by
considering both continuous and binary decisions.13 A surrogate
model and offline maps of optimal scheduling are employed to
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operate the controller. Reactive scheduling has also been studied
via MILP algorithms for short-term problems.14 The algorithm
robustness is tested against unit shutdown and order
modification on a large-scale industrial batch plant. Simulta-
neous batching and scheduling in complex multiproduct plants
has also been addressed by Sundaramoorthy and Maravelias.15

If merging RTO and control with supply chain higher level
layers initially involved heavy computational costs due to
millions of variables,16 tremendous developments in efficient
large-scale nonlinear programming (NLP) algorithms have led
to an increase of applications in the chemical industry.17 Pontes
et al.18 described RTO strategies, both static and dynamic, to be
implemented in an industrial polymerization process. The
authors show how the proposed methodologies improve the
process economic performance rather than using traditional
industrial practices. Krishnamoorthy et al.19 proposed hybrid
versions of RTO to overcome the limiting factor of its
implementation in the industrial plants, that is, waiting for
steady-state conditions.
Moreover, RTO techniques have been seen as a key

instrument to success in the increasing competition of refining
industries, allowing one to optimize performance while fulfilling
safety constraints.20

RTO and predictive control have also been integrated. For
example, this happened in a petrochemical plant to improve the
automation level of the styrene production subject to
disturbance and plant-model mismatch.21

While petrochemical and refining industries have accepted
RTO in the past few years, its application to different chemical
processes is still limited. To overcome this, Hernandez et al.22

proposed an RTO scheme applicable to a complex catalyzed
process showing operational improvements despite modeling
errors.
A recent application on bioethanol production showed that

the use of closed-loop dynamic RTO in the ethanol distillation
process can improve the profitability of this product as an
environmentally friendly fuel.23 Another RTO example
managing the operability of hybrid energy systems to minimize
operating costs while fulfilling all electrical and thermal load
requirements, which can be found in Vaccari et al.24 When
planning to optimally manage a large chemical plant, optimizing
many different aspects can be important. To this aim, Wang and
Wang25 proposed a multi-objective multi-factorial optimization
model, which takes account of product quality, production
capacity, and energy consumption.
Therefore, the main objective of the present work is to build

an RTO scheme, according to the paradigms of Industry 4.0, to
optimize a set of production rates of different products in a
chemical plant facility. The minimization of an economic
objective function is constrained by the feasibility of product
stocks and fulfillment of a complex and variable sales plan. It has
to be noted that the current work is not only a merely extended
version of what is discussed in Vaccari et al.,1 but it also presents
a more comprehensive formulation oriented to best fit company
needs and constraints.
The rest of the paper is organized as follows. Section 2

presents the problem description, generalities, and main
components. Amore detailed definition of variables, constraints,
and a formalization of the proposedmethodology is illustrated in
Section 3. Description of a suitable preliminary scheduling
procedure for batch products, details about the optimization
objective function, and other algorithm implementation features
can be found in this section. A real case study from an Italian

inorganic chemical industry, together with results and discussion
about the methodology test, is shown in Section 4. Section 5
then concludes the paper, underlining the main achievements.

2. PROBLEM DEFINITION
The problem considered in this work is to model and optimally
schedule the production plan of an Italian industrial site of the
inorganic chemical sector. The maximum horizon along which
the optimization problem is developed is a week long, since after
7 days it is neither safe nor convenient to forecast production.
This work is part of a larger competitive project addressed to
enhance the factory management of Altair Chimica SPA (later
on cited as Altair), including aspects of automation, digital-
ization, machine learning, and process computerization. The
project aims at fully integrating the proposed RTO system with
the distributed control system (DCS) and the local area network
of the industrial site through a specifically designed interface.26

A block diagram of the project architecture that identifies the
position of the developed RTO system among the other players
of the industrial site is shown in Figure 1. The acquisition of

production data takes place through a specifically developed
dynamic connection between the DCS and the management
system in which client orders are entered. An additional
connection, under definition, will allow the management system
to automatically receive client orders, avoiding the manual entry
phase currently in place. The proposed RTO system can acquire
input data from the DCS and give its outputs to the DCS itself at
fixed times; therefore, the optimization system occupies a
hierarchically superior level to (basic and advanced) controllers
and works as a fully automatic operator.
Various (nP) products of interest of the company are

considered in this work. The starting modeling idea for the
optimization problem is the weekly production plan designed by
the operators of the selling department based on the various
sales according to client requests. Let us introduce some
notation and name xj, with j = 1, 2, ..., the hourly production
c o l u m n v e c t o r o f p r o d u c t j , t h a t i s ,

x x x x, ..., , ...,j j j
i

j
n n0 1h h= [ ] ∈− , where nh is the total

number of hours to be optimized, for example, nh = 24 × 7 =
168 h is the optimization horizon length for a week (nd = 7).
Sales plans of each product are input data obtained from the

selling department of the company and used within the
optimization problem as parameters. For each day considered
in the optimization, let us define the selling time as τd, with d = 1,
2, ..., nd, and let us establish that a sale is satisfied if and only if the
stock of the considered product j contains enough material at
time τd. From this definition, it follows that the sales vector of
p r o d u c t j a s s u m e s t h e f o l l o w i n g f o r m :

S S S S, ..., , ...,j j j
i

j
n n0 1h h= [ ] ∈− in which the only non-

zero components are the ones for i = τd.
Stocks of each product are calculated within the optimization

algorithm as functions of sales and production rates, and they

Figure 1. Block diagram of the local computer system. Dotted lines are
for connections under definition.
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are, as well, bounded by physical constraints. Analogously to
production rates, let us define the initial stock of product j as

j
0σ ∈ and its evolution over time is obtained by mass balance

as follows

x S a x E i n( ) 0, ...,j
i

j
i

k

L

j k
i

j
i

j
i

j
i

h
1

1
,

j

∑σ σ= + − − + ∀ =+

=
(1)

The stock σj depends linearly also on the function aj(x), named
self-consumption, because some of the products are consumed
within the industrial site to obtain other chemicals. Note that σj

0

is a parameter within the optimization problem as it represents
the initial stock value of product j before the optimization
horizon. Its value is read directly from the DCS at themoment in
which the optimization is intended to start. Moreover, some of
the products can be obtained in multiple production lines, that
is, Lj different production rates contribute to the same stock σj.
Another possibility for storable products is to have external
provision of raw materials (Ej), which are then transformed to
final products of interest for the industrial site. From a modeling
point of view, since the generic raw material comes from other
suppliers and, therefore, its orders are still handled by the
management system, it is convenient to represent its provision
similarly as done for the sales plan.
On the other hand, some products cannot be stocked within

the industrial site due to specific safety or logistic reasons. Since
they may not be provisioned or sold either, they must be
consumed within the facility. Hence, their material balance eq 1
reduces to

x a x i n0 ( ) 0, ...,
k

L

j k
i

j
i

h
1

,

j

∑= − ∀ =
= (2)

Another important note is that some of the considered
products are produced by means of batch reactors. This implies
that the corresponding hourly production rate xj can assume
only a limited number of values. In particular, it is zero
throughout most of the optimization period and then assumes a
certain positive value for a few specific times. Let us identify the
number of batch products as nB, where nB < nP.
Therefore, the scope of the presented methodology is to find

the best production schedule for all the nP products by
minimizing operating costs and the summation of stocks of
certain products while fulfilling all the various constraints. In the
process control field, this indeed represents an RTO-level
decision, since its main purpose is to communicate the various
set-points to be used in the control layer, for example, DCS.

3. PROPOSED METHODOLOGY
In this section, the various features of our RTO scheme for
optimizing the production plan and based on algorithms
developed in Python are presented and detailed.
3.1. Data, Variables, and Constraints. The hourly

production rates of the various products are treated as
optimization variables subject to different bound constraints.
Let us identify the optimization variable vector with

x x x x, ... , ...,T
j
T

n n
T T n

1
x

P B
= [ ] ∈− , where nx = (nP − nB)nh.
Input data and parameters of the problem are sale vector Sj

and initial stock value σj
0 of each product. These quantities are

used, in particular, to build the material balances of all the
chemicals treated in the facility and hence involved in the

algorithm. Additional both linear and non-linear relations
implying different components of x and safety considerations
represent the problem constraints. Minimum and maximum
values for bound and process constraints have been set as
constant. Initialization values for the optimization variables are
taken from the weekly production plan designed by hand by the
selling department.

3.2. Scheduling Procedure for Batch Products. As
anticipated in Section 2, the company produces also nB different
products in batch reactors. In Section 1, it has been underlined
how batch scheduling is a necessary step when dealing with
chemical plant optimization.27,28 A comprehensive review about
batch process scheduling can be found in Meńdez et al.29 The
different typologies of batch products considered here are
named B, that is B1, ..., Bl, ..., BnB. Although usually batch products
result from multiple batch operations, we underline that each
considered batch product Bl is here obtained via a single reaction
operation. The correlated service operations are not here
considered and, for this reason, the associated specific reaction
time tBl

is comprehensive of service time (tB
serv

l
). We assume that

each reactor produces an amountWBl
that depends on the type

of Bl, so that the corresponding “hourly production rate” can be
calculated as follows: xBl

= WBl
/tBl

with l = 1, ..., nB. Note that
these hourly production rates are not considered as optimization
variables to avoid dealing with a mixed-integer problem, where
batch and continuous productions are simultaneously opti-
mized. Therefore, a specific, preliminary optimization procedure
for batch products has been implemented inspired by the
general precedence notion.29

The nr batch reactors available at the plant facility in which
product Bl can be produced are named R1, ..., Rr, ..., Rnr. Since
they can be employed simultaneously and at any time during the
day, a criterion for scheduling their operation is needed. The
criterion chosen is rather simple, yet effective, for the company
needs and it is based on the sales plan of each Bl. The underlying
idea can be expressed by the sentence the first needed is the first
to be produced. Practically, the procedure scans every selling
time τd of each Bl and registers the corresponding sale. Then,
depending on the current stock value recalculated at each
iteration, the production of product Bl related to its sale request
is scheduled or not. In order to make a comparison with the
selling times τd, another time variable is defined: the reactor time
(TR1

, ..., TRr
, ..., TRnr), which is linked to the reactor employment

and, indicating the last time instant a reactor is used, allows us to
track the production assignment. The reactor time starts from
zero for an unemployed reactor and grows depending on the
production schedule for the considered reactor, that is, the more
a reactor is employed, the greater is its TRr

. If a reactor is in use
and not available since the start of the optimization horizon, the
corresponding future TRr

and the product Bl in production have
to be known. Even though this second information is not directly
needed for the scheduling procedure, it will be used later on in
the optimization problem. The scheduled batch is placed always
in the reactor that has the lowest TRr

. When for the product Bl,
more than one batch is required to cover the sale, the sequencing
procedure schedules the first batch in the selected reactor and
then scans all the reactor times to see which one is the smallest.
Therefore, with this logic, each reactor schedule is filled with
production stages in a homogeneous way, employing all the
reactors, possibly, at the same time. When more than one
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product Bl is required on a single τd, the sale of the one with the
longest reaction time tBl

is the first to be addressed. Only after its

fulfillment are the sales of the products with smaller tBl
tackled.

Here follows a simple example to better clarify the
implemented procedure. Let us consider the 5 day sales plan
for three types of products as reported in Table 1.

We first scan the actual reactors’ activity and check which ones
are available and which ones are operating. Let us assume that
both R1 and R2 are currently busy in producing B2 and B3,
respectively. Hence, the initial situation can be represented as
TR1

> 0, TR2
> 0, TR3

= 0. Depending on when the production in
R1 and R2 is scheduled to finish, the corresponding stocks of B2
and B3 are updated. In this way, we can consider the proper
stocked amount of each product when checking for covering the
sales. The first sale concerns B2 on day 1: the production in R1 is
assumed to finish on day 1, so that the updated stock of B2 is
sufficiently high to cover SB2

1τ and no new batch is scheduled.
Referring to the example of Table 1, Figure 2 shows a simple

diagram further explaining the scheduling criterion. For the sake
of simplicity, only three reactors are here considered, that is nr =

3. Moving to day 2 of the sales plan, two products are requested,
B1 and B3, and, since tB3

> tB1
, we start from B3. After checking its

stocks updated with the production in R2 finished on day 2, we
assume that the product amount is enough to cover for SB3

2τ .
Moving on to analyze B1 stock, we assume that
S WB B B

0
1

2
1 1

σ− ≤τ so that only one batch to produce B1 is
needed. To place the B1 production, we check which reactor has
the lowest reactor time tR; hence, we employ R3 and update its
time: TR3

= 0 + tB1
. On day 3 of the sales plan, we need (after

checking its stock) to schedule another production of B3 to cover
SB3

3τ . As previously seen for B1, we start by analyzing the reactor
times and, consequently, placing the production in R1, as shown
in the middle panel of Figure 2. Hence, the updated reactor
times are TR1

= tB2
* + tB3

, TR2
= tB3

*, TR3
= tB1

. The last sale on day
5 requests more than one product, specifically B2 and B3. From
stock calculation, four batch productions of B2 and one of B3 are
needed. As done on day 2, we start by placing the one batch of B3

(since tB3
> tB1

) in R2 and update the reactor times. Only then do
we place the first two batches of B2 in R3, the third one in R1 and
the fourth one again in R3. Note that every time a batch is
scheduled, the reactor times tR are updated and the procedure
looks always for the smallest one. This is why the four batches of
B2 are scheduled in such an alternated way (see the bottom panel
of Figure 2).
Finally, all the sales are satisfied ifTRr

≤ τd ∀d = 1, ..., nd∧ r = 1,
..., nr; otherwise, an automatic message to the operator is sent.
With the nr reactor schedules completed, it is possible to
calculate the “hourly production rate” of batch products xP, and,
consequently, evaluate their contribution to the hourly self-
consumption function aj(·) of other substances for the whole
optimization horizon. This lets us define nB nh parameters used
within the constraint set of the optimization problem.

3.3“. ON−OFF” Switching Procedure for Production
Lines. In the real plant operation, each production line has
evidently two operability modes: “ON”, that is, the line is
running within a range between a minimum and a maximum
production capacity, and “OFF” when the line is shut down for
logistic or safety reasons. In such a framework, there are different
ordinary and/or abnormal situations for which a line could be
switched off. Obviously, for the production lines currently under
maintenance, the problem to deal with is much simpler as it is
only required to collapse the production capacity range to zero.
Conversely, safety reasons are not to be predicted most of the
time, that is, avoiding overfilling product storage tanks may be
practiced by switching off the corresponding line. In addition, in
normal operations of the plant, there are periods along the year
when the general production has to be reduced as a direct
consequence of lower market demand. However, in our problem
formulation, the production rates are bottom-limited by a
minimum value that for most of the products is strictly greater
than zero. Hence, when a scenario in which the algorithm
decides to impose minimum rates occurs, the stocks could still
be overfilled due to the lack of sales. This is particularly crucial
when the initial stocks σj

0 are quite high.
Hence, to represent the production lines’ behavior at best,

several optimization variables should be in principle binary and
not continuous within the optimization space. Moreover, since
in this work we aimed at developing a tool able to handle quite
large problems, this would have implied MINLP problems in
several hundreds/thousands of variables, which cannot be

Table 1. Sales Plan Example for Batch Productsa

τ1 τ2 τ3 τ4 τ5

B1 0 SB1
2τ

0 0 0

B2
SB2

1τ 0 0 0 SB2
5τ

B3 0 SB3
2τ SB3

3τ 0 SB3
5τ

aSBl
dτ are tons of Bl requested by the client on day d.

Figure 2. Scheme for the reactor scheduling criterion. Times TRr
are

represented by the end of the solid box. The daily selling times τd are
indicated by vertical red dashed lines on top of which the sales to be
matched are evidenced. The asterisk on tBl

identifies an ongoing
production not yet finished when the optimization began.
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efficiently tackled by off-the-shelf solvers. Therefore, to avoid
such an algorithm structure, a specific procedure to check
whether some production line is to be shut down or not has been
formulated as in procedure 1.
For each product j, this procedure first acquires all the

information about the sales plan vector (Sj), the initial stock
(σj

0), the lower and upper stock bounds (σmin,j, σmax,j) and the
lower bound for the production rate

x x x x( , ..., , ..., )j j j
i

j
n

min, min ,
0

min, min,
1h= [ ]−

Hence, the stock profile along the simulation horizon σj is
calculated with the given xmin,j. Then, if there is at least one time
instant i+ in which the stock exceeds its maximum bound (line 4
in procedure 1), both the lower and the upper bounds on the
production rate are set to zero from there to the end, as displayed
in lines 5−6 of procedure 1. This allows the production rate to
be at zero and avoids an overload of the storage tanks. The
reason why also the production rate upper bound (xmax,j) is set to
zero is twofold: first, we need to simulate a switched-off line and
second, to avoid a non-zero production rate lower than the
original minimum. Once xmin,j is updated, it is applied to
recalculate σj. This time we check if there is at least one time
instant i* in which the stock goes below its minimum bound
(line 12). If this is the case, from the time instant i*, the
production line has to be switched on again and original xmin,j
and xmax,j have to be reinstated somehow. At this point, line 13
shows the calculation of the maximum number of hours Hrec
needed to recover the missing stock σmin,j − σj

i*, in which ⌈z⌉
represents the ceiling operator applied to a real number z.
Therefore, the recalculated lower and upper bounds for the

production rate are displayed in lines 14−15. The procedure is
iterative and stops when no issues about σj are found, that is,
σmin,j ≤ σj

i ≤ σmax,j ∀i = 0, ..., nh. If no feasible configuration is
found, an error arises and the sales plan has to be reformulated.
Clearly, this procedure actually applies only to those products
with a non-zero xmin,j

i . The final (eventually) recalculated xmin
and xmax then enter into the optimization problem as decision
variable bounds as illustrated in Section 3.4. Finally, note that
procedure 1 and the scheduling procedure for batch operations,

described in Section 3.2, let us avoid binary variables that would
have required a mixed-integer formulation of the optimization
problem. Despite that, in the literature, many other studies have
dealt with switching off machinery, equipment, or production
lines, for example, typically energy efficiency-oriented;24 the
proposed procedure 1 offers a practical solution to such a
problem that has proven successful in an industrial context.

3.4. Optimization Problem. The problem to be solved is a
NLP with the following general structure

f xmin ( )
x (3a)

subject to

x x xmin max≤ ≤ (3b)

c c x c( )min max≤ ≤ (3c)

c x( ) 0eq = (3d)

in which x nx∈ , ceq(x) refers to thematerial balance of nns non-
storable products and to further nonlinear constraints that are
better explained below, while c(x) refers to bound constraints on
stocks plus other process constraints. Non-linearity of the
optimization problem derives from modeling refinements of
some peculiar process dynamics. In particular, to avoid the case
in which one piece of equipment is used to synthesize
simultaneously two different products (j1, j2), an exclusivity
constraint between two optimization variables is introduced

x x i n0 0, ...,j
i

j
i

h1 2
= ∀ = (4)

We underline that, as written, equality (4) violates the
constraints qualifications.30 To this aim, the actual implementa-
tion of the exclusivity constraint is described by (5)

x x i n0, ...,j
i

j
i

h1 2
≤ ϵ ∀ = (5)

where ϵ is a small real number (magnitude 10−7).
Moreover, we also note that equality (4) can be reformulated

into binary variables by introducing at least nh additional
variables, hence defining an MILP problem. Although this
enlarges the possibilities to explore for future research by
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exploiting well-known solvers (e.g., GuRoBi, CPLEX), this is
actually out of the scope of the current work, that is, we maintain
an NLP formulation.
The objective function f(x) to minimize is continuous, linear

in x, and is defined according to the company needs, as detailed
in Section 3.5.
Since sales misplacement can generate infeasible solutions, a

smooth replacement for f(x) in (3a) is considered

i

k
jjjjjj

y

{
zzzzzzf x s s s smin ( )

i
i

i
i

i
i

i
ieq, eq,∑ ∑ ∑ ∑μ+ ̅ + ̲ + ̅ + ̲

ξ (6a)

subject to

min maxξ ξ ξ≤ ≤ (6b)

c c x s( ) 0min − − ̲ ≤ (6c)

c x c s( ) 0max− − ̅ ≤ (6d)

c x s( ) 0eq eq− − ̲ ≤ (6e)

c x s( ) 0eq eq− ̅ ≤ (6f)

s s s s, , , 0eq eq̅ ̲ ̅ ̲ ≥ (6g)

in which

x s s s s

x

x

, , , ,

, 0 , 0 , 0 , 0

, , , ,

T T T T T T

T T T T T

T T T T T

eq eq

min min

max max

T

T

ξ

ξ

ξ

= [ ̅ ̲ ̅ ̲ ]

= [ ]

= [ ∞ ∞ ∞ ∞ ] (7)

where ξ is the augmented decision variable; μ is a positive scalar
penalty factor for the slack variables, assumed the same for all,
for the sake of simplicity; ∞ is a vector of “infinity” and 0 is a
vector of zeros. The slack variables s s s s, , ,eq eq̅ ̲ ̅ ̲ are defined by
the maximum deviation from the corresponding imposed
constraint over the time horizon. Their dimensions are

 s s s s, , ,n n n n
eq eq

P B oc ns̅ ̲ ∈ ̅ ̲ ∈− + , where noc is the number of
further process constraints. Thus, problem (6a) is the one
actually solved within the algorithm and by construction it
admits always a feasible solution. Furthermore, an initialization
procedure for the slack variables has also been finalized to make
the starting point always numerically feasible. This approach
helps also in terms of reduction of computational costs. For this
reason, a post-processing analysis of the optimization result is
needed to verify if all the hard constraints are fulfilled, as detailed
in Section 3.6.
Since the horizon length nh is not a fixed parameter, it can be

set also shorter to rerun a forecast that ends on the same day but
using updated parameters data. This is the case, for example,
when the sales plan is changed over a week due to new client
requests or sudden offer withdrawals. It can also happen that due
to unexpected plant operation variations, some product stock
values face significant changes that could not be taken into
account during the forecast. For this reason, it is suitable to rerun
the algorithm to obtain an updated optimal operation indication
on a shorter horizon. In this way, a closed-loop-like behavior of
the algorithm can be tested offline at first and then online
directly via the DCS in the final phase of the project.
3.5. Multipurpose Objective Function. As explained in

Section 3.4, the objective function of problem (6a) is based on
the company needs, optimal practices, and economic goals. To

this aim, defining a single-purpose function would mean
disregarding some key concepts. Hence, a multipurpose
objective function is considered. In particular, the different
components of f(x) are grouped into two main parts. The first
one ( fσ(x)) is the summation of stocks of certain products at the
end of the optimization horizon. This takes account of a specific
plant strategy, that is, to have the minimum amount of certain
key products in a specific period of the week, month, or year.
The second part ( feco(x)) represents the economic expenses
linked to the electrical energy consumption of the facility. Since
the considered chemical processes are great consumers of
electrical energy, analyzing the energy price variation over time
allows one to encourage production at lower costs. The electrical
energy prices, in Italy, can be found in the so-called national unit
price (PUN) index that gives hourly prices for the current day.
Nevertheless, the optimization based on the PUN can only be
performed on the first day considered, given the daily variability
of the data and the impossibility of a reliable forecast for future
days. In addition, an ad hoc procedure was also set up to pre-
process the raw PUN data. According to the company
specifications, the hourly PUN data have been divided into
three groups of at least 6 h each to limit the operational variation.
This makes it possible to identify three daily bands, each
characterized by an average energy price, and therefore to weigh
accordingly the production of certain products during the day
within the objective function. The procedure for identifying the
three bands is automated by choosing as a criterion the
minimization of the sum of the three variances. Nevertheless, it
should be noted how the proposed optimization problem is still
able to account for the hourly energy data, that is, the daily
bands’ identification reflects a simplified approach of the main
general one.
In this way, the formulated objective function can evaluate

both the economic and practical feasibility aspects of the plant
operations. To avoid problems due to the non-uniformity of the
units of measure involved in the objective function, as the stock
term ismeasured in tons, while the energy term (PUN) is usually
expressed in €/MW h, a normalization is applied. Therefore, the
final objective function is expressed as

f x f x f x( )
(1 )

( ) ( )
1 2

eco
α

α
α
α

= − +σ (8)

where α ∈ [0, 1] is a weight, chosen by the operator, that shifts
the focus of the function to be more “energy-oriented” (α→ 1)
or more “storage-oriented” (α→ 0), while α1 and α2 are the two
suitable scaling factors.

3.6. Postprocessing Analysis. Given ξ* the optimal
solution of problem (6a), we need to check whether the values
of the slack variables (s s s s, , ,eq eq̅ ̲ ̅ ̲ ) are null or not. If at least
one component of the slack variables is positive, one or more
constraints along the weekly horizon is violated, that is, problem
(3a) is not feasible. In this work, we consider two types of
constraint violations: admissible or inadmissible.
The first category identifies the so-called soft constraints, the

ones that when violated do not imply issues of safety or physical
infeasibility. This is the case of non-critical products which,
when missing, can be replaced by others without particular
problems (e.g., by dilution or mixing of available products) or
complaints from clients. The drawback of such a product
replacement can be a small economic loss; hence, even if these
constraint violations are not harmful, they should be avoided or
limited as much as possible. This is the reason why there is no
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distinction in constraint treatment in the algorithm itself but just
on the post-processing analysis of the optimization results.
Therefore, when soft constraints are violated, the operator still
receives a warning as the output message, but the sales plan can
be left unchanged and the solution accepted.
However, hard constraints are related to physical impossibil-

ities or unsafe operations, that is, their violations are
inadmissible. The levels of storage tanks represent the simpler
example of this type of constraint. When the stock value
overpasses the maximum limit, containers are spilling materials,
that is, for sure a dangerous scenario. On the other hand,
negative values of stocks simply are not picturing a real situation.
Despite that, an additional threshold of 1 ton has been
considered for violations of storage tank bounds to avoid
generating messages (flooding alarms) perceived as a false alert
state by the operator. Another alert scenario is when electrical
devices are not working in the voltage ranges imposed by
ordinary factory configuration. In these cases, the operator
receives an errormessage, indicating which constraint(s) is (are)
violated and suggesting a change in the sales plan to obtain an
acceptable solution.
Independently from the postprocessing analysis, the final

output communicated to the operator is threefold: the optimal
solution of problem (6a), the stocks forecast along the
optimization horizon, and, if present, the error/warning
messages. As a matter of fact, in the current phase of the
project, the algorithm is intended to work as a decision-
supporting tool in background mode, that is, the company
operators always take the final decisions.

4. INDUSTRIAL CASE STUDY

An application example to real data and sales plan from Altair is
now presented and discussed. Altair offers products and services
for the inorganic chemistry and oenology industry, always taking
into account process efficiency, energy saving, environmental

sustainability, and renewability. A simplified process scheme is
shown in Figure 3.

4.1. Case Study Description. The considered products,
divided by category, are:

• 13 continuous products: HCl(a), HCl(b), HCl(c), FeCl3
(a),

FeCl 3
(b), NaClO, NaOH(a), NaOH(b), KOH(a), KOH(b),

KOH(s), K2CO3
(aq), K2CO3

(s);
• 1 non-storable and non-salable product: Cl2;
• 3 batch products (chloroparaffins): Cl-Par(a), Cl-Par(b),

Cl-Par(c).

Among the continuous-time productions, there are some
peculiarities. Three products, HCl(a), FeCl3

(b), and KOH(b),
consist of two production lines each, that is LHCl

(a) = LFeCl3
(b) =

LKOH
(b) = 2, where both lines contribute to the same storage tanks.

Consequently, this implies two sets of nh optimization variables
for this kind of products. Moreover, the second line of FeCl3

(b)

needs an external raw material to operate, that is, exhausted
chloridric acid, E-HCl; therefore, the optimization variable
xFeCl3,2

(b) has to satisfy the balance eq 1 with the provision of E-
HCl as the constraint. In addition, since E-HCl does not have a
production rate associated, it is not part of the decision variables,
but it is a parameter in problem (6a) and its stock values are
included as inequality constraints. A proportionality factor
(0.783) links xFeCl3,2

(b) with the consumption rate of E-HCl. In
addition, the second production line of KOH(b) and the one of
NaOH(b) use the same piece of equipment, an evaporator;
therefore, these products cannot be obtained simultaneously as
they need to fulfill the exclusivity constraint (4). This is the main
reason for the NLP nature of problem (6a).
Moreover, some chemicals shown in Figure 3 are not included

in the optimization problem since their consumption (NaCl,
KCl, H2O) or production (H2) can be derived from the other
substances considered. According to our notation, the number
of variables we take into account is nP = 20, nns = 1, nB = 3.
Moreover, the reactors available for the batch products are three,

Figure 3. Simplified process scheme of the Altair case study.
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that is nr = 3. The reaction times for the three chloroparaffins is
the same, that is tCl‑Par

(a) = tCl‑Par
(b) = tCl‑Par

(c) = 31 h, and so it is their
productivity per batch (WCl‑Par

(a) = WCl‑Par
(b) = WCl‑Par

(c) = 12 t).
Given the structure of the optimization problem, it is clear

how its overall dimension depends on the horizon length, from
nx = 17 × 168 = 2856 for a 7 day optimization to nx = 17 × 24 =
408 for a 1 day forecast. In addition to the nP − nB − nns = 16
constraints on product stocks, further process and safety
constraints (noc = 7) are to be considered. Hence, the total
number of constraints along the optimization horizon ranges
from over 1000 for a 1 day simulation to over 8000 for a week
long forecast. Clearly, the computational cost of the
optimization is also greatly dependent on the selected horizon
length: from a couple of seconds for a 1 day simulation to 10−15
min for a week long forecast. More detailed examples can be
found in Sections 4.2.2 and 4.3.2.
To handle the dimensionality and nonlinearity of the

problem, the optimization algorithm has been equipped with a
solver widely used and validated in the literature for large linear
and non-linear programming problems, IPOPT,31 and a
symbolic framework offered by CasADi.32 The two parts of
the selected objective function f(x) are defined as follows

f x( ) n n n n

n

HCl HCl HCl NaClO

E HCl

h h h h

h

(a) (b) (c)σ σ σ σ

σ

= + + +

+
σ

‐ (9)

i
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I

II
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(a)

∑ ∑

∑

γ= +

+

+

+ (10)

in which the stock-oriented term fσ(x) includes the stocks of
HCl(a), HCl(b), HCl(c), NaClO, and E-HCl on the last day of the
optimization horizon, while the economical term feco(x) is the
sum of three different sets of hourly production rates of KOH(a)

on the first day of optimization, each weighted by the
corresponding mean band price of PUN. The indices “I, II,
III” in (10) represent the three periods of the day in which the
PUN index is divided according to the procedure described in
Section 3.5, PUNz with z = 1, 2, 3 is the corresponding mean
energy price, and, finally, γ is a conversion factor with
dimensions MW h/ton/h. Let us underline how the definition
of functions (9) and (10) is linked to a specific profit strategy
defined by Altair on the basis of the last 3 years of productivity,
inventory management, and client order dispatch organization.
Hence, other economic factors, as chemical prices or conversion
factors, are not explicitly included.
To fully understand the complexity of the problem, some

aspects need to be clarified. Chlorine Cl2 is non-storable, thus

non-salable, albeit produced by some products and consumed
by others, that is eq 2 becomes x a x( )i i

Cl Cl2 2
= , ∀ i = 0, ..., nh. Its

self-consumption function, aCl2(·), has positive terms corre-
sponding to those products that generate Cl2 and negative ones
for the chemicals which consume it. Mass balances and reaction
stoichiometry allow one to calculate the specific constants used
to link each term of aCl2(·) to the Cl2 production rate.
As explained in Section 3.2, the batch products (Cl-Par) do

not enter directly in the optimization problem. Nevertheless,
since they are chlorine consumers, their contribution to aCl2(·)
needs to be calculated. The preliminary chloroparaffins’
production schedule, once defined, gives the number of reaction
batches needed to satisfy the sales plan. This information,
together with the known reaction time tCl‑Par required per each
batch, allows the calculation of the chlorine requests schedule
along all the optimization horizons. Therefore, taking into
consideration only the effective reaction time, that is, tCl‑Par −
tCl‑Par
serv , the hourly consumption of Cl2 is computed from mass
balances.
Sodium and potassium hydroxide solutions (NaOH(b),

KOH(b)) are obtained by concentration from NaOH(a) and
KOH(a), respectively; hence the self-consumption function plays
also an important role in the mass balance equations of these
products. The four products are still considered, stored, and sold
separately with different destinations, but their stock values are
linked through function aj(·).
In addition, the considered problem has three soft constraints:

sales for missing HCl(a) can be covered by both HCl(b) and
HCl(c) after dilution, whereas sales for missing HCl(b) can be
covered only by HCl(c), still after dilution; a similar logic lets
FeCl3

(b) (high-purity) to be sold directly as FeCl3
(a) (low-purity)

with a little profit loss. Apart from stock bounds and nonlinear
exclusivity constraint, many other hard constraints are to be
satisfied for these replacements to be feasible: sum of stocks of
three concentration levels of HCl, sum of stocks of the two
higher concentrated HCl ((b) and (c)), sum of stocks of two
qualities of FeCl3. In addition, since NaOH(a) and KOH(a) are
produced in electrolysis cells from NaCl and KCl, respectively,
electrical bounds on working conditions have to be considered
as well.

4.2. Case 1: RecedingHorizonOptimization. 4.2.1. Case
Description. Since sales plan updates or unpredictable
(eventually emergency) situations may happen and affect stocks
level of certain products, it is a good practice to perform receding
horizon optimization to follow the evolution of the plant
conditions and apply more suitable control actions. In the
considered example, 1 week is first optimized; then, from a 7 day
prediction, the horizon is reduced to reach a 1 day ahead forecast
by moving ahead the starting time and keeping fixed the final
one. As an example and for synthesis purposes, Table 2 shows
the initial stock values and the sales plans for the product

Table 2. Initial Stock and Sales Plans for the Product KOH(b) along theWeek for Different Horizon Lengths;
KOH
0

(b)σ and SKOH
(b) Are

Expressed in Tons

horizon length KOH
0

(b)σ SKOH(b) 1τ SKOH(b) 2τ SKOH(b) 3τ SKOH(b) 4τ SKOH(b) 5τ SKOH(b) 6τ SKOH(b) 7τ

7 days 630 13 0 299 182 143 104 130
4 days 700 182 143 104 130
3 days 600 143 130 130
2 days 570 104 143
1 day 540 130
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KOH(b) for all the optimization horizons taken into consid-
eration. Note that those in Table 2 are just part of all the
parameters used in the optimization problem (6a) for each
simulation.
The sales of KOH(b) are a typical example of how the sales

plan can change during the sameweek. To bemore visually clear,
the sales in Table 2 span from day 1 to day 7 for all the
optimization horizons. The horizon gets shorter while going
down the table rows and each optimization uses Sj

1τ as

parameter, that is, the first day of the 1 day optimization
corresponds to the seventh day of the 7 day one. As the objective
of this first example is to stress the receding horizon feature of

the proposed algorithm, the chosen objective function to be
minimized is fully stock-oriented, that is, f(x) = fσ(x) as α = 0.

4.2.2. Results. The optimization results for the receding
horizon example are summarized in Table 3. The main indices
adopted to evaluate the performance of the proposed method-
ology are illustrated here. The first index Φ(ξ) represents the
augmented objective function in (6a). Its initial values (in) are
so high because of the initial values of slack variables that
compensate for the different constraint violations. In general,
also the optimized value (opt) of Φ(ξ) is not so small due to
some residual, usually soft, constraint violations. As a matter of
fact, it can be seen how the initial very large values ofΦ(ξ) most
of the times reflect into very small values of f(x). On the

Table 3. Optimization Resultsa

7 days 4 days 3 days 2 days 1 day

init opt init opt init opt init opt init opt

Φ(ξ) [ton] 1.7 × 106 102.9 1.8 × 106 117.5 1.7 × 106 117.3 1.6 × 106 397.5 2.8 × 105 109.4
f(x) [ton] 43.1 96.16 15.04 96.16 132.1 98.2 206 107.3 153 109.4
ng,viol(x) 430 27 315 26 177 19 104 25 31 0
ts [s] 617 56.4 97.5 7.2 2.4

aInitial and final values of the objectives function, number of violated constraints (ng,viol(x)) and computational times; init and opt represent the
initial condition and optimal solution found by problem (6a).

Figure 4. Stock behavior for the three dilutions of HCl (first three panels) and their sum (last two panels).
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contrary, the optimized value of f(x) is more or less the same for
the first three optimizations, whereas it increases for shorter
horizons. This is mainly because the objective function (9)
consists of minimizing the stocks of specific products at the end
of the horizon. Therefore, when a change in the sales plan of the
products directly involved in (9) occurs, it may result in an initial
stock higher than the one forecasted in the previous
optimizations with longer horizons. In this case study, the
product NaClO shows a sale reduction along the week, which
implies increased residual stock values at the end of the horizon
for the 2 day and 1 day optimizations.
The results obtained by each optimization are always

numerically feasible due to problem (6a) definition, but different
messages are produced. Only the 1 day optimization achieves a
solution that is feasible also for problem (3a). As a matter of fact,
ng,viol(x) is the total number of constraints violated for problem
(3a) (c(x) and ceq(x)), and, as explained in Section 3.6, this
number accounts for both soft and hard constraints. In
particular, for all the optimizations but the 1 day one, there
are two kinds of soft constraint violations: the first one signals
that the stock of HCl(a) is under the minimum bound
considered, while the second one alerts that also the stock of
HCl(b) is under the same circumstances. However, the values of
total stocks of HCl and sum of stocks of HCl(b) and HCl(c) are
always acceptable. Only on one occasion, the 2 day optimization
(in bold in Table 3), the lack of HCl(a) and HCl(b) cannot be

recovered by dilution of HCl(c) and thus two hard constraints are
not fulfilled. To better understand, the time trends of the stocks
for the three dilution levels of HCl, the total stock, and the sum
of types (b) and (c) are shown in Figure 4. It can be seen how both
HCl(a) and HCl(b) are missing at different hours, but only with
the 2 day optimization (red line in Figure 4) the total stock and
the cumulative stock σHCl

(b) + σHCl
(c) go under their minimum bound

at the 144th hour (i.e., the 21st hour in the 2 day optimization).
In this case, being the initial stocks read directly by the DCS, the
operator can communicate the algorithm result to the selling
department and then request for a possible sale reorganization of
HCl(a), HCl(b), or HCl(c) to have a feasible solution also for the 2
day optimization.
The last row of Table 3 includes the computation time ts,

comprehensive of the batch scheduling and optimization stages.
Simulations are performed on a macOS, CPU 2.6 GHz Core i5
(I5-4278U), 8GB DDR3. It can be noted how the computation
time drastically decreases by shortening the optimization
horizon, spanning between 10 min for a 7 day optimization to
less than 3 s when dealing with a 1 day forecast. This is mainly
due to the dimension variability of the problem and especially to
the increase/decrease of the nonlinear constraints. Since a
possible re-run of the algorithm may be necessary due to sales
plan updates, it is important that especially the short horizon
optimizations can be executed fairly quickly.

Figure 5. Production rate (top) and stock behavior (bottom) for the product KOH(b).
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Finally, Figure 5 shows the optimal trends, production rate,
and stock for the product KOH(b). The corresponding initial
conditions and sales plans are reported in Table 2.It can be
observed that a 3 day jump occurs between the 7 day and the 4
day optimizations, as the stock forecast at the hour 72 with the 7
day optimization is quite far from the actual initial stock of the 4
day one. The production rate is more or less constant for the 7
day optimization, while the 4 day ones has higher values due to
the second line activity increase. Note that the spikes within the
trends of production rates are due to numerical problems due to

the exclusivity constraint on x i
NaOH

( )
(b) and x i

KOH ,2
( )

(b) . Anyway,
these are still not significantly impacting the stock value behavior
as it is usually characterized by a saw-tooth shape, that is, stock
time trend shows a cyclic behavior with a linear slow increase
and then a sudden decrease as a corresponding sell occurs.
Another aspect to note for the 1 day and 2 day optimizations is a
rounded profile of the production rate. This can be explained
considering the actual initial stocks for the considered two cases
that are higher than the corresponding one calculated for longer
horizons. This allows the production rate to be lower so that the
stock profile slowly increases until reaching the value needed to
fulfill the last sale.
To make more clear the link between the sales plan and the

stock profiles, Figure 6 shows the stock profiles seen in Figures 4
and 5 with the addition of red bars indicating the product
demand per each sale. For the sake of clearness, only the 7 day
results are plotted. When looking at Figure 6, the relation
between the saw-tooth profile of the stock and the sale modeled
to be accounted only on the selling time τd appears clear.
4.3. Case 2: Multipurpose Objective Function.

4.3.1. Case Description. The purpose of this second section is
to better analyze what happens when a multipurpose objective
function is considered, that is, not only the stocks of certain
products are minimized, but also the electrical energy costs due
to the electrolysis reactions are taken into account. The horizon

length optimization is now fixed and we intend to study how the
different objective functions influence the algorithm outcome
and performance. For the sake of simplicity and clearness, our
focus is on the 3 day optimization. The PUN index considered
and its division into three groups made by the automatic
procedure explained in Section 3.5 are shown in Table 4.
The three periods of the day have been identified to have the

most distance between the mean prices of each group. The
minimum number of hours per group is six and, according to the
values of the PUN given, the procedure has calculated to expand

Figure 6. 7 day stock profiles from Figures 4 and 5 with red bars indicating the product demand per each sale. All the values are in tons.

Table 4. PUN Index Values, Division into Groups, and Mean
Prices for Each Group
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the central group to its maximum: 12 h. Once three mean-levels
of PUN are obtained, the multipurpose function is defined as in
(5−6b), and the scaling factors are set as α1 = 100 ton, α2/γ =
7000 € ton/MW. Different optimizations are thus performed
varying the parameter α.
4.3.2. Results.Three values of α are here considered: 0, 0.5, 1.

The optimization results for α = 0.5 and α = 1 are reported in

Table 5. For the sake of comparison, the values for α = 0 are
taken from the 3 day column of Table 3. Note that the value of
f(x) for non-zero α is 2 orders of magnitude lower; this is due to
the normalization and to the factors α1, α2. In addition, the
number of violated constraints for the optimal solution is
reduced with respect to the case for α = 0. This is still due to the
objective function composition and order of magnitude.

Table 5. Optimization Results for α = 0, 0.5, 1; init and opt Represent the Initial Condition and Optimal Solution Found by
Problem (6a)

α = 0 α = 0.5 α = 1

init opt init opt init opt

Φ(ξ) [-] 1.7 × 106 117.3 1.7 × 106 13.11 1.7 × 106 12.77
f(x) [-] 132.1 98.2 0.99 0.84 0.65 0.50
ng,viol(x) 177 19 177 18 177 13
ts [s] 97.5 56.6 77.4

Figure 7. Production rate behavior for the product KOH(a) with different values of α. The lower and upper bounds are equal to 5 and 18, respectively.

Figure 8.Distribution of the objective function f(xopt) (on the left) and its two parts fσ(xopt) and feco(xopt) (on the right) with varying α value from 0 to
1.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.1c00209
Ind. Eng. Chem. Res. 2021, 60, 7853−7867

7864

https://pubs.acs.org/doi/10.1021/acs.iecr.1c00209?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c00209?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c00209?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c00209?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c00209?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c00209?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c00209?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c00209?fig=fig8&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.1c00209?rel=cite-as&ref=PDF&jav=VoR


However, all the constraints violated for both α = 0.5 and α = 1
optimizations are still the soft ones and do not impact the sales
plan. Moreover, the final objective function value is always less
than the starting one. This is because the economic part of the
function is significantly decreased by the KOH(a) production
rate update on the first day of optimization.
To better understand this behavior, the trends of the

production rates of KOH(a) are shown in Figure 7.
It can be immediately seen how a non-zero α value affects the

production rate of KOH(a), i.e., the primary variable linked to the
actual consumption of energy in the facility. Two optimizations
with non-zero α have quite the same behavior in the first 24 h
and present a peculiar profile in this time lapse. As one would
expect a lower production rate when a higher price is in force, the
algorithm decides to do the opposite by setting the rate at a value
even higher than the one with the “non-economic” function. As a
fact, staying for 18 h at a rate in the range 6.5−7 ton/day and
only for the remaining 6 h around 10 ton/day gives a total cost of
3.5€ against 1.5€. One more explanation can be given by looking
at the production of chlorine in the first 24 h. The zero value
gives approximatively 136 ton of Cl2 against around 115 ton and
113 ton for α = 0.5 and α = 1 cases, respectively. This has an
influence on all the other products rates, but, since the material
balance (2) for Cl2 is always satisfied and no other constraints
are violated, the algorithm behavior appears reasonable. Another
peculiarity that can be observed in Figure 7 affects the second
part of the plot. As a matter of fact, from around the 45th hour,
the trend for the α = 0.5 optimization tends to the one with zero
α. This is because, despite the interest in minimizing the
electrical energy costs, the α = 0.5 optimization still wants to
tackle the stock minimization for the end of the horizon. As one
should expect, a middle value of α reflects an average behavior
between the two extremes. This offers for sure an advantage
when forecasting on short horizons, but it still can be useful for
week-long prediction to understand how the plant would
behave. Table 5 shows how this flexibility in the objective
function does not reflect an increase in the computational cost.
On the contrary, the time employed for α = 0.5 is almost half
with respect to a “non-economic” function and one-third less
than the “pure-economic” one.
To better analyze the variability of the optimal objective

function value, the Pareto distribution of the objective function
for different values of α is presented in Figure 8.
From the right panel of Figure 8, we can see how the two parts

of the objective function fσ(xopt) and feco(xopt) are quite constant
when varying α from 0 to 1. Hence, once a sales plan, initial
stocks, and a PUN vector are given, α itself represents the main
contributor to the f(xopt) value. As a matter of fact, as evidenced
in the left panel of Figure 8, the relation between f(xopt) and α is
an almost perfect negative linearity. As already explained above
referring to Figure 7, for α ≠ 1, fσ(xopt) is the dominant
component of f(x) at the end of the optimization horizon, that is,
just when the stock of the products involved in its formulation
are computed. On the contrary, feco(xopt) involves only the PUN
prices relative to the first day of the horizon length. This fact
implies very similar stock values at the end of the horizon for all
α ≠ 1, which leads to an almost constant value of fσ(xopt).
Nevertheless, as already shown by Figure 7 for α = 0 and α = 0.5,
this does not mean an overlapping behavior of the production
rate along all the horizon length but only at its end.
4.4. Summary and Outlook. Given the results obtained

and discussion presented, it is important to remark that, the
objective function is easily customizable to any new company

request or interest and the output of the algorithm can be
directly implemented into IT systems of the industrial site.
Hence, even though the algorithm inputs arrive automatically
from the DCS and the management system through a collection
and store data framework, the final output of the RTO system is
still analyzed offline by an operator. The two options available
are accepting the proposed solution and passing it to the control
room or communicating the algorithm result to the selling
department to proceed for a possible sale reorganization. It
should be noted that, in a future release, the RTO algorithm will
be able to directly communicate with the management system
and selling department. Nonetheless, field measurements and
other process variables and performance indices that are
currently imported directly from the DCS and stored in the
above-mentioned framework are to be used not only to run the
optimization algorithm but also to modify and possibly
adaptively correct the underlying model.26

Finally, it is important to note that the proposed RTO
algorithm allows Altair to face a major digital transformation
toward a scenario in which the main industrial processes are
online modeled, monitored, controlled, and optimized. In
particular, our RTO system allows the plant operators to
undertake the most strategical decisions for supply chain
management, supported by process automation, digitalization,
and simulation. A detailed description of the framework
implemented in the site is beyond the scope of the present
manuscript, and it might be illustrated in a future work
discussing the overall architecture of the system. However, the
work presented here has several characteristics related to
Industry 4.0; in particular, process simulation, digital-twin,
optimization, IoT, and big data/industrial analytics are all typical
features and/or key enabling techniques exploited and
implemented within the proposed framework. Please note that
if the theoretical methodologies used and discussed in the paper
are actually well-established in the scientific literature, the
industry application of the proposed system, in a sector
otherwise still far from the digital revolution, surely represents
a major aspect of novelty for this work.

5. CONCLUSIONS

An RTO algorithm to best manage production rates based on
the sales plan has been presented. This work is part of a larger
project involving the integrated digitalization of an Italian
industrial site according to Industry 4.0 paradigms.
The products considered are produced continuously or in

batch reactors, can be stored and sold to clients, or must be
consumed in real-time by other processes. The proposed
algorithm implements a preliminary scheduling procedure to
deal with batch productions so as to avoid a mixed-integer
optimization problem. A preliminary suitable scheduling
criterion is defined and a corresponding procedure is developed.
Once the best configuration is found, the batch production
schedule is passed to the optimization algorithm as a parameter.
Another preliminary procedure for setting the production lines
at switch-off is implemented and its mechanism illustrated. This
allows one to avoid the use of binary variables inside the
optimization problem. To always obtain a numerically feasible
solution, a smooth version of a nonlinear problem has been
formulated. For this reason, a general and widely used NLP
solver is adopted. Amultipurpose function is implemented in the
NLP to consider both best facility practices and energy costs
linked to operations. A postprocessing analysis of the optimal
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solution gives a feedback to the operator who can accept or
reject the suggested decision plan.
The algorithm has been successfully tested over real data of

Altair, an Italian inorganic chemical company. It has been shown
how the possibility of applying a receding horizon approach
and/or a multipurpose optimization gives significant enhance-
ments to the production scheduling and sales fulfillment. In this
way, operators are helped in a demanding task otherwise
manual, time-consuming, and highly subject to errors, and
process managers are helped in better planning plant operations.
Nonetheless, the currently ongoing project, devoted to full
computerization and digitalization of the facility, finds its kernel
in the presented RTO system, taking advantage of its high
versatility and suitability to different plant conditions.
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