796 research outputs found

    The impact of heterogeneity and geometry on the proof complexity of random satisfiability

    Get PDF
    Satisfiability is considered the canonical NP-complete problem and is used as a starting point for hardness reductions in theory, while in practice heuristic SAT solving algorithms can solve large-scale industrial SAT instances very efficiently. This disparity between theory and practice is believed to be a result of inherent properties of industrial SAT instances that make them tractable. Two characteristic properties seem to be prevalent in the majority of real-world SAT instances, heterogeneous degree distribution and locality. To understand the impact of these two properties on SAT, we study the proof complexity of random -SAT models that allow to control heterogeneity and locality. Our findings show that heterogeneity alone does not make SAT easy as heterogeneous random -SAT instances have superpolynomial resolution size. This implies intractability of these instances for modern SAT-solvers. In contrast, modeling locality with underlying geometry leads to small unsatisfiable subformulas, which can be found within polynomial time

    Upgrade of the MAGIC Telescope with a Multiplexed Fiber-Optic 2 GSamples/s FADC Data Acquisition system

    Full text link
    In February 2007 the MAGIC Air Cherenkov Telescope for gamma ray astronomy was fully upgraded with a fast 2 GSamples/s digitization system. The upgraded readout system uses a novel fiber-optic multiplexing technique. It consists of 10-bit 2 GSamples/s FADCs to digitize 16 channels consecutively and optical fibers to delay the analog signals. A distributed data acquisition system using GBit Ethernet and FiberChannel technology allows to read out the 100 kByte events with a continuous rate of up to 1 kHz.Comment: 4 pages, 6 figures, to appear in the proceedings of the 30th International Cosmic Ray Conference, Merida, July 200

    Vergleich des Erregerspektrums bei an Durchfall erkrankten und klinisch gesunden Absetzferkeln auf ökologisch wirtschaftenden Ferkelerzeugerbetrieben

    Get PDF
    Der Durchfallkomplex der Absetzferkel stellt eine Faktorenkrankheit dar, die einer vielschichtigen Diagnostik zur Identifizierung der betriebsspezifischen Ursachen bedarf. Ein nicht unerheblicher Teil der Diagnosestellung des PWD-Komplexes beruht auf der Kenntnis der vorhandenen Pathogene, die mit dem Krankheitsbild in Verbindung gebracht werden. Ziel dieser Studie war es, die Pathogene sowie deren mögliche Enterotoxine zu identifizieren und mit den Stämmen aus Proben von gesunden Absetzern der gleichen Gruppe zu vergleichen, um Aussagen über deren Bedeutung als ursächliches Agens treffen zu können. Dazu wurden auf 6 ökologisch wirtschaftenden Ferkelerzeugerbetrieben Kottupferproben von klinisch gesunden sowie an Durchfall erkrankten Absetzern entnommen und mikrobiologisch sowie molekularbiologisch auf Durchfallerreger und deren Toxingene untersucht. Es wurden vorwiegend verschiedene E. coli-Stämme isoliert, deren Häufigkeitsverteilung und Virulenzfaktorgengehalte sich zwischen gesunden und erkrankten Tieren nicht unterschied (p>0,05). Es wird geschlussfolgert, dass der alleinige Nachweis von Pathogenen und deren Virulenzfaktoren in der Diagnostik des Krankheitskomplexes ‚Absetzerdurchfall’ nicht ausreicht, um effiziente Präventivmaßnahmen erarbeiten zu können

    Effect of Segment-Body Vibration on Strength Parameters

    Get PDF
    Background In this study, we examine the biomechanical advantage of combining localized vibrations to hamstring muscles involved in a traditional resistance training routine. Methods Thirty-six male and female participants with at least 2 years of experience in resistance training were recruited from the German Sport University Cologne. The participants were randomized into two training groups: vibration training group (VG) and traditional training group (TTG). Both groups underwent a 4-week training phase, where each participant worked out at 70 % of the individual 1 repeat maximum (RM—maximum load capacity of a muscle for one lift to fatigue) (4 sets with 12 repetitions each). For participants in the VG group, local vibration was additionally applied directly to hamstring muscles during exercise. A 2-week examination phase preceded the pretests. After the pretests, the subjects underwent a prescribed training for 4 weeks. At the conclusion of the training, a 2-week detraining was imposed and then the study concluded with posttests and retest. Results The measured parameters were maximum isometric force of the hamstrings and maximum range of motion and muscle tension at maximum knee angle. The study revealed a significant increase in maximum isometric force in both training groups (VG = 21 %, TTG = 14 %). However, VG groups showed an increase in their range of motion by approximately 2 %. Moreover, the muscle tension at maximum knee angle increased less in VG (approximately 35 %) compared to TG (approximately 46 %). Conclusions We conclude that segment-body vibrations applied in resistance training can offer an effective tool to increase maximum isometric force, compared to traditional training. The cause for these findings can be attributed to the additional local vibration stimulus.NPRP award NPRP 05-086-2-031 from the Qatar National Research Fund (a member of The Qatar Foundation)

    Attack Forecast and Prediction

    Get PDF
    Cyber-security has emerged as one of the most pressing issues for society with actors trying to use offensive capabilities and those who try to leverage on defensive capabilities to secure their assets or knowledge. However, in cyber-space attackers oftentimes have a significant first mover advantage leading to a dynamic cat and mouse game with defenders. Cyber Threat Intelligence (CTI) on past attacks bears potentials that can be used by means of predictive analytics to minimize the attackers first mover advantage. Yet, attack prediction is not an established means and automation levels are low. Within this work, we present Attack Forecast and Prediction ( ) which is based on MITRE Adversarial Tactics, Techniques and Common Knowledge (ATT&CK). consists of three modules representing different analytical procedures which are clustering, time series analysis, and genetic algorithms. identifies trends in the usage of attack techniques and crafts forecasts and predictions on future malware and the attack techniques used. We rely on time sorting to generate subgraphs of MITRE ATT&CK and evaluate the accuracy of predictions generated by based on these. Results of an experiment performed on the basis of 493 different malware, validate the utility of using for attack prediction. reaches for each module an F-score which is higher than an extrapolation of observed probabilities (baseline) with an F-score of up to 0.83 for a single module. It can hence be considered an effective means for predicting future attack patterns and help security professionals with preparing for future attacks

    Activity-Based Anorexia Reduces Body Weight without Inducing a Separate Food Intake Microstructure or Activity Phenotype in Female Rats—Mediation via an Activation of Distinct Brain Nuclei

    Get PDF
    Anorexia nervosa (AN) is accompanied by severe somatic and psychosocial complications. However, the underlying pathogenesis is poorly understood, treatment is challenging and often hampered by high relapse. Therefore, more basic research is needed to better understand the disease. Since hyperactivity often plays a role in AN, we characterized an animal model to mimic AN using restricted feeding and hyperactivity. Female Sprague-Dawley rats were divided into four groups: no activity/ad libitum feeding (ad libitum, AL, n=9), activity/ad libitum feeding (activity, AC, n=9), no activity/restricted feeding (RF, n=12) and activity/restricted feeding (activity-based anorexia, ABA, n=11). During the first week all rats were fed ad libitum, ABA and AC had access to a running wheel for 24h/d. From week two ABA and RF only had access to food from 9:00-10:30 am. Body weight was assessed daily, activity and food intake monitored electronically, brain activation assessed using Fos immunohistochemistry at the end of the experiment. While during the first week no body weight differences were observed (p>0.05), after food restriction RF rats showed a body weight decrease: -13% vs. day eight (p0.05). Similarly, the daily physical activity was not different between AC and ABA (p>0.05). The investigation of Fos expression in the brain showed neuronal activation in several brain nuclei such as the supraoptic nucleus, arcuate nucleus, locus coeruleus and nucleus of the solitary tract of ABA compared to AL rats. In conclusion, ABA combining physical activity and restricted feeding likely represents a suited animal model for AN to study pathophysiological alterations and pharmacological treatment options. Nonetheless, cautious interpretation of the data is necessary since rats do not voluntarily reduce their body weight as observed in human AN

    Nesfatin-130−59 Injected Intracerebroventricularly Differentially Affects Food Intake Microstructure in Rats Under Normal Weight and Diet-Induced Obese Conditions

    Get PDF
    Nesfatin-1 is well-established to induce an anorexigenic effect. Recently, nesfatin-130−59, was identified as active core of full length nesfatin-11−82 in mice, while its role in rats remains unclear. Therefore, we investigated the effects of nesfatin-130−59 injected intracerebroventricularly (icv) on the food intake microstructure in rats. To assess whether the effect was also mediated peripherally we injected nesfatin-130−59 intraperitoneally (ip). Since obesity affects the signaling of various food intake-regulatory peptides we investigated the effects of nesfatin-130−59 under conditions of diet- induced obesity (DIO). Male Sprague–Dawley rats fed ad libitum with standard diet were icv cannulated and injected with vehicle (5 μl ddH2O) or nesfatin-130−59 at 0.37, 1.1, and 3.3 μg (0.1, 0.3, 0.9 nmol/rat) and the food intake microstructure assessed using a food intake monitoring system. Next, naïve rats were injected ip with vehicle (300 μl saline) or nesfatin-130−59 (8.1, 24.3, 72.9 nmol/kg). Lastly, rats were fed a high fat diet for 10 weeks and those developing DIO were icv cannulated. Nesfatin-1 (0.9 nmol/rat) or vehicle (5 μl ddH2O) was injected icv and the food intake microstructure assessed. In rats fed standard diet, nesfatin-130−59 caused a dose-dependent reduction of dark phase food intake reaching significance at 0.9 nmol/rat in the period of 4–8 h post injection (−29%) with the strongest reduction during the fifth hour (−75%), an effect detectable for 24 h (−12%, p < 0.05 vs. vehicle). The anorexigenic effect of nesfatin-130−59 was due to a reduction in meal size (−44%, p < 0.05), while meal frequency was not altered compared to vehicle. In contrast to icv injection, nesfatin-130−59 injected ip in up to 30-fold higher doses did not alter food intake. In DIO rats fed high fat diet, nesfatin-130−59 injected icv reduced food intake in the third hour post injection (−71%), an effect due to a reduced meal frequency (−27%, p < 0.05), while meal size was not altered. Taken together, nesfatin-130−59 is the active core of nesfatin-11−82 and acts centrally to reduce food intake in rats. The anorexigenic effect depends on the metabolic condition with increased satiation (reduction in meal size) under normal weight conditions, while in DIO rats satiety (reduction in meal frequency) is induced

    Explainable machine learning for labquake prediction using catalog-driven features

    Get PDF
    Recently, Machine learning (ML) has been widely utilized for laboratory earthquake (labquake) prediction using various types of data. This study pioneers in time to failure (TTF) prediction based on ML using acoustic emission (AE) records from three laboratory stick-slip experiments performed on Westerly granite samples with naturally fractured rough faults, more similar to the heterogeneous fault structures in the nature. 47 catalog-driven seismo-mechanical and statistical features are extracted introducing some new features based on focal mechanism. A regression voting ensemble of Long-Short Term Memory (LSTM) networks predicts TTF with a coefficient of determination (R2) of 70% on the test dataset. Feature importance analysis revealed that AE rate, correlation integral, event proximity, and focal mechanism-based features are the most important features for TTF prediction. Results reveal that the network uses all information among the features for prediction, including general trends in high correlated features as well as fine details about local variations and fault evolution involved in low correlated features. Therefore, some highly correlated and physically meaningful features may be considered less important for TTF prediction due to their correlation with other important features. Our study provides a ground for applying catalog-driven to constrain TTF of complex heterogeneous rough faults, which is capable to be developed for real application

    Sequestosome‐1 (p62) expression reveals chaperone‐assisted selective autophagy in immune‐mediated necrotizing myopathies

    Get PDF
    Diffuse myofiber necrosis in the context of inflammatory myopathy is the hallmark of immune-mediated necrotizing myopathy (IMNM). We have previously shown that skeletal muscle fibers of IMNM patients may display nonrimmed vacuoles and sarcoplasmic irregularities. The dysfunctional chaperone activity has been linked to the defective assembly of skeletal muscle proteins and their degradation via lysosomes, autophagy and the proteasomal machinery. This study was undertaken to highlight a chaperone-assisted selective autophagy (CASA) pathway, functionally involved in protein homeostasis, cell stress and the immune response in skeletal muscle of IMNM patients. Skeletal muscle biopsies from 54 IMNM patients were analyzed by immunostaining, as well as by qPCR. Eight biopsies of sIBM patients served as pathological controls, and eight biopsies of nondisease control subjects were included. Alteration of autophagy was detectable in all IMNM biopsy samples highlighted via a diffuse sarcoplasmic staining pattern by p62 and LC3 independent of vacuoles. This pattern was at variance with the coarse focal staining pattern mostly confined to rimmed vacuoles in sIBM. Colocalization of p62 with the chaperone proteins HSP70 and alpha B-crystalline points to the specific targeting of misfolded proteins to the CASA machinery. Bcl2-associated athanogene 3 (BAG3) positivity of these fibers emphasizes the selectivity of autophagy processes and these fibers also express MHC class I sarcolemma. Expression of genes involved in autophagy and endoplasmic reticulum (ER) stress pathways studied here is significantly upregulated in IMNM. We highlight that vacuoles without sarcolemmal features may arise in IMNM muscle biopsies, and they must not be confounded with sIBM-specific vacuoles. Further, we show the activation of selective autophagy and emphasize the role of chaperones in this context. CASA occurs in IMNM muscle, and specific molecular pathways of autophagy differ from the ones in sIBM, with p62 as a unique identifier of this process

    A Preoperative Clinical Risk Score Including C-Reactive Protein Predicts Histological Tumor Characteristics and Patient Survival after Surgery for Sporadic Non-Functional Pancreatic Neuroendocrine Neoplasms:An International Multicenter Cohort Study

    Get PDF
    Background: Oncological survival after resection of pancreatic neuroendocrine neoplasms (panNEN) is highly variable depending on various factors. Risk stratification with preoperatively available parameters could guide decision-making in multidisciplinary treatment concepts. C-reactive Protein (CRP) is linked to inferior survival in several malignancies. This study assesses CRP within a novel risk score predicting histology and outcome after surgery for sporadic non-functional panNENs. Methods: A retrospective multicenter study with national exploration and international validation. CRP and other factors associated with overall survival (OS) were evaluated by multivariable cox-regression to create a clinical risk score (CRS). Predictive values regarding OS, disease-specific survival (DSS), and recurrence-free survival (RFS) were assessed by time-dependent receiver-operating characteristics. Results: Overall, 364 patients were included. Median CRP was significantly higher in patients >60 years, G3, and large tumors. In multivariable analysis, CRP was the strongest preoperative factor for OS in both cohorts. In the combined cohort, CRP (cut-off >= 0.2 mg/dL; hazard-ratio (HR):3.87), metastases (HR:2.80), and primary tumor size >= 3.0 cm (HR:1.83) showed a significant association with OS. A CRS incorporating these variables was associated with postoperative histological grading, T category, nodal positivity, and 90-day morbidity/mortality. Time-dependent area-under-the-curve at 60 months for OS, DSS, and RFS was 69%, 77%, and 67%, respectively (all p <0.001), and the inclusion of grading further improved the predictive potential (75%, 84%, and 78%, respectively). Conclusions: CRP is a significant marker of unfavorable oncological characteristics in panNENs. The proposed internationally validated CRS predicts histological features and patient survival
    corecore