194 research outputs found
Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake.
During 1986 planktonic primary production and controlling factors were investigated in a small (A0 = 11.8 · 103 m2, Zmax = 11.5 m) meromictic kettle lake (Mittlerer Buchensee). Annual phytoplankton productivity was estimated to ca 120 gC · m–2 · a–1 (1,42 tC · lake–1 · a–1). The marked thermal stratification of the lake led to irregular vertical distributions of chlorophylla concentrations (Chla) and, to a minor extent, of photosynthesis (Az). Between the depths of 0 to 6 m low Chla concentrations (< 7 mg · m–3) and comparatively high background light attenuation (kw = 0,525 m–1, 77% of total attenuation due to gelbstoff and abioseston) was found. As a consequence, light absorption by algae was low (mean value 17,4%) and self-shading was absent.
Because of the small seasonal variation of Chla concentrations, no significant correlation between Chla and areal photosynthesis (A) was observed. Only in early summer (June–July) biomass appears to influence the vertical distribution of photosynthesis on a bigger scale. Around 8 m depth, low-light adapted algae and phototrophic bacteria formed dense layers. Due to low ambient irradiances, the contribution of these organisms to total primary productivity was small. Primary production and incident irradiance were significantly correlated with each other (r2 = 0.68). Although the maximum assimilation number (Popt) showed a clear dependence upon water temperature (Q10 = 2.31), the latter was of minor importance to areal photosynthesis
Determination of phytoplankton production by the radiocarbon method: a comparison between the acidification and bubbling method (ABM) and the filtration techn1que
On the occasion of the workshop of the group on aquatic primary productivity (GAP) held in Konstanz (1982), 14C-uptake rates were determined by two widely used, well-established procedures. In order to avoid any variation in the results caused by manipulation of the samples, subsamples for both determinations were withdrawn from the same bottles. The acid-bubbling method (ABM) yielded results which exceeded those of the filtration method by about 30%. Excretion of 14C labelled dissolved organic matter was negligibly small and therefore cannot account for the observed differences. Based on available information also other possible explanations discussed can Likely be dismissed. Hence additional effort is needed to identify and eliminate possible shortcomings in either metho
A system in balance? ? Implications of deep vertical mixing for the nitrogen budget in the northern Red Sea, including the Gulf of Aqaba (Eilat)
International audienceWe investigated the implications of deep winter mixing for the nitrogen budget in two adjacent systems, the northern Red Sea proper, and the Gulf of Aqaba. Both are subtropical oligotrophic water bodies. The main difference is that in the gulf deep winter mixing takes place regularly, whereas the northern Red Sea proper is permanently stratified. In the Gulf of Aqaba, we observed significantly lower nitrate deficits, i.e. deviations from the Redfield ratio, than in the northern Red Sea proper. Assuming that other external inputs and losses in N or P are very similar in both systems, the higher nitrate deficit can be explained by either lower nitrogen fixation in the (stratified) northern Red Sea, which seems unlikely. An alternative explanation would be higher rates of benthic denitrification than in the gulf. By comparing the two systems we have indirect evidence that benthic denitrification was much lower in the Gulf of Aqaba due to higher oxygen concentrations. This we attributed to the occurrence of deep winter mixing, and as a consequence, the nitrate deficit was close to zero (i.e. N:P ratio close to "Redfield"). If both nitrogen fixation and benthic denitrification take place, as in the northern Red Sea proper, the result was a positive nitrate deficit (i.e. a deficit in nitrate) in the ambient water. The nitrate deficit in the northern Red Sea was observed in spite of high iron deposition from the surrounding desert. Our results strongly support the concept of nitrogen as the proximate, and phosphate as the ultimate limiting nutrient for primary production in the sea. This must not be neglected in efforts for protecting the adjacent reefs against eutrophication
The Pickaninnys Paradise / music by Nat. Osborne; words by Sam M. Ehrlich
Key of G. Cover: a photo of the Courtney Sisters and a drawing of a African American people working on the Field; Publisher: Harry von Tilzer Music Publishing Co. (New York)https://egrove.olemiss.edu/sharris_c/1151/thumbnail.jp
Photosynthetic characteristics of five high light and low light exposed microalgaea as measured with 14C-uptake and oxygen electrode techniques
#Tetraselmis suecica, #Thalassiosira pseudonana, #Chaetoceros calcitrans, #Isochrysis galbana et #Microcystis sp.$ ont été utilisées pour déterminer leurs capacités d'adaptation et pour tester les différences entre les deux méthodes de mesure. Les cultures avaient été exposées à un éclairement fort (HL) ou à un éclairement faible (LL) pendant deux jours avant l'expérience. L'efficacité de la conversion de la lumière (...) et l'activité photosynthétique spécifique maximale par unité de chlorophylle (...) ont été généralement plus élevées pour les cultures LL. Les divers paramètres photosynthétiques mesurés par la méthode de l'électrode à oxygène ont été différents de ceux obtenus par celle du 14C. Les importantes différences de quotient photosynthétique (O2/CO2), observées aussi bien entre cultures HL et LL d'une même espèce qu'entre espèces différentes, soulignent la difficulté de convertir les productions d'oxygène en assimilation de carbone. (D'après résumé d'auteur
The first decade of oligotrophication of Lake Constance
In Lake Constance, after several decades of cutrophication, a decrease in phosphorus loading over the last decade has lead to a partial recovery from eutrophication. Here we analyse the shift in the taxonomic composition of phytoplankton during the first decade of oligotrophication in Lake Constance. During the 1980s, spring total P concentrations decreased from ca. 130 to less than 50 mgr·l–1. This decrease was reflected by an approximately proportional decrease in summer phytoplankton biomass while spring phytoplankton biomass seemed unresponsive. Major taxonomic changes occured during both growth seasons. In spring, the proportion of diatoms, green algae and Chrysophyta increased while the proportion of Cryptophyta decreased. The summer trend was very different: the relative importance of diatoms decreased and Cryptophyta and Chrysophyta increased, while Chlorophyta reached their peak around 1985. These trends are also analysed at the genus level. Comparison with taxonomic trends during the eutrophication period shows the expected reversals in most cases. Comparison with other lakes shows general similarities, with the notable exception that Planktothrix rubescens has never been important in Lake Constance. The increase of diatoms during spring is attributed to their improved competitive performance with increasing Si:P ratios. Their decrease during summer is explained by the increasing silicate removal from the epilimnion by increasing spring populations
Joint field experiments for comparisons of measuring methods of photosynthetic production
During the 1st GAP Workshop at Konstanz in April 1982 comparative measurements of phytoplankton primary production by several techniques were conducted simultaneously at an offshore station in Lake Konstanz and an experimental algal pond. Suspended glass bottle exposure techniques using 14C and 13C uptake gave Pz (mg C m−3 h−1) values which varied considerably near-surface, but estimates of areal rates for the euphotic zone ΣPcu(mg C m−3 h−1) which were reasonably close. In the lake, ΣPz, from a vertical tube exposure (with 14C uptake) was greater than rates derived for integrated bottle samples. The oxygen bottle method permitted a good estimate of compensation depth, corresponding to in situ growth studies. There were difficulties in direct comparison between O2 and carbon methods. Correlation between them for Pz was good in the lake but poor in the pond, both for suspended bottle and vertical tube methods. This series demonstrates that despite reasonable overall estimates, comparatively minor methodological differences in experimental technique can cause large variatio
Effects of rising temperature on pelagic biogeochemistry in mesocosm systems: a comparative analysis of the AQUASHIFT Kiel experiments
A comparative analysis of data, obtained during four indoor-mesocosm experiments with natural spring plankton communities from the Baltic Sea, was conducted to investigate whether biogeochemical cycling is affected by an increase in water temperature of up to 6 °C above present-day conditions. In all experiments, warming stimulated in particular heterotrophic bacterial processes and had an accelerating effect on the temporal development of phytoplankton blooms. This was also mirrored in the build-up and partitioning of organic matter between particulate and dissolved phases. Thus, warming increased both the magnitude and rate of dissolved organic carbon (DOC) build-up, whereas the accumulation of particulate organic carbon (POC) and phosphorus (POP) decreased with rising temperature. In concert, the observed temperature-mediated changes in biogeochemical components suggest strong shifts in the functioning of marine pelagic food webs and the ocean’s biological carbon pump, hence providing potential feedback mechanisms to Earth’s climate system
Benthic and Hyporheic Macroinvertebrate Distribution Within the Heads and Tails of Riffles During Baseflow Conditions
The distribution of lotic fauna is widely acknowledged to be patchy reflecting the interaction between biotic and abiotic factors. In an in-situ field study, the distribution of benthic and hyporheic invertebrates in the heads (downwelling) and tails (upwelling) of riffles were examined during stable baseflow conditions. Riffle heads were found to contain a greater proportion of interstitial fine sediment than riffle tails. Significant differences in the composition of benthic communities were associated with the amount of fine sediment. Riffle tail habitats supported a greater abundance and diversity of invertebrates sensitive to fine sediment such as EPT taxa. Shredder feeding taxa were more abundant in riffle heads suggesting greater availability of organic matter. In contrast, no significant differences in the hyporheic community were recorded between riffle heads and tails. We hypothesise that clogging of hyporheic interstices with fine sediments may have resulted in the homogenization of the invertebrate community by limiting faunal movement into the hyporheic zone at both the riffle head and tail. The results suggest that vertical hydrological exchange significantly influences the distribution of fine sediment and macroinvertebrate communities at the riffle scale
- …