50 research outputs found

    PATTERN MATCHING IN METAMODEL-BASED MODEL TRANSFORMATION SYSTEMS

    Get PDF
    The vision of the OMGÂŽs Model-Driven Architecture (MDA) has necessitated the extensive research of model compilers, which are able to process graph-based visual models specified mainly in the Unified Modeling Language (UML). A possible mechanism for the realization of MDA model compilers can be graph rewriting-based transformation approach. Previous work has introduced the tool Visual Modeling and Transformation System, which uses graph rewriting as transformation mechanism, but the pattern language of the rewriting rules consists of UML class diagram elements instead of object diagram level patterns. This paper provides the algorithmic background for the application of these rules specified by the class diagram elements. To achieve that, it examines the allowed instantiation configuration based on the UML standard, and supplies a constructive algorithm to compute the allowed number of the objects participating in a valid instantiation of a class model. Furthermore, starting from the VF2 algorithm, the pattern matching algorithm for the left hand side of the metamodel-based rewriting rule is provided via several optimization steps examined

    Code Generation with the Model Transformation of Visual Behavior Models

    Get PDF
    There exist numerous techniques to define the abstract and the concrete syntax of metamodeled languages. However, only a few solutions are available to describe the dynamic behavior (animation) of visual languages. The aim of our research is to provide visual modeling techniques to define the dynamic behavior of the languages. Previously, we have created languages to describe animation. In this paper, we describe how these models can be processed by model transformation techniques. We elaborate the main steps of the transformation and show the details as well. We use graph rewriting-based model transformation, therefore we provide a highly generic solution which can be easily modified, and analyzed with the techniques borrowed from the field of graph rewriting. The termination analysis for the presented method is also provided

    Active Model Patterns with Interactive Model Transformation

    Get PDF
    With the proliferation of domain-specific languages, the generalization of OO patterns is a natural demand. Concepts and tools supporting pattern specification and execution for arbitrary domain-specific languages facilitate to meet these requirements. Our previous work introduced the Active Model Pattern Infrastructure and possible realizations for its static aspect. In this paper, we contribute a realization for the operational aspect of the framework. We propose graph rewriting-based interactive model transformation to describe and automate often recurring operational patterns in domain-specific modeling. We have extended a general transformation system with localized application of the rules and facilitate run-time customization possibilities for the domain engineer to influence the execution of the operations. We can specialize this approach to provide an implementation of the static aspect as well. We have realized our solution in the Visual Modeling and Transformation System

    Toward Automated Verification of Model Transformations: A Case Study of Analysis of Refactoring Business Process Models

    Get PDF
    Verification of the transformations is a fundamental issue for applying them in real world solutions. We have previously proposed a formalization to declaratively describe model transformations and proposed an approach for the verification. Our approach consists of a reasoning system that works on the formal transformation description and deduction rules for the system. The reasoning system can automatically generate the proof of some properties. In this paper, we present a case study, to demonstrate our approach of automated verification of model transformations in a multi-paradigm environment

    Constraint validation support in visual model transformation systems

    Get PDF
    Model-Driven Architecture (MDA) standardized by OMG facilitates to separate the platform independent part and the platform specific part of a system model. Due to this separation Platform-Independent Model (PIM) can be reused across several implementation platforms of the system. Platform-Specific Model (PSM) is ideally generated automatically from PIM via model transformation steps. Because of the appearance of high level languages, object-oriented technologies and CASE tools, metamodeling becomes more and more important. Metamodeling is one of the most central techniques both in design of visual languages, and reuse existing domains by extending the metamodel level. The creation of model compliers on a metamodeling basis is illustrated by a software package called Visual Modeling and Transformation System (VMTS), which is an n-layer multipurpose modeling and metamodel-based transformation system. VMTS is able to realize an MDA model compiler. This paper (i) addresses the relationship between the constraints enlisted in metamodel-based rewriting rules and the pre- and postconditions, (ii) it introduces the concepts of general validation, general preservation and general guarantee, which facilitate that if a transformation step is specified adequately with the help of constraints, and the step has been executed successfully for the input model, then the generated output model is in accordance with the expected result, which is described by the transformation step refined with the constraints. An illustrative case study based on constraint specification in rewriting rules is also provided

    A Model Transformation for Automated Concrete Syntax Definitions of Metamodeled Visual Languages

    Get PDF
    Metamodeling techniques are popular in describing the rules of special domains, but these techniques do not support defining presentation for these domains , namely the concrete syntax. The aim of our research is to provide a method to create the concrete syntax for metamodeling systems in a flexible, efficient way. Several domain-specific languages have been created that support defining the concrete syntax, i.e. the visualization. The main concern of this paper is to present a model transformation method that processes our presentation definitions and transforms them automatically into source code. The source code implements a plug-in capable of editing the models. A termination analysis for the presented method is also provided

    Verification of Model Transformations to Refactoring Mobile Social Networks

    Get PDF
    Verification of model processing programs, where only the definitions of the program and the languages of the models to be transformed are analyzed, has become a fundamental issue in model-based software engineering. This analysis may become very complex, but it is performed only once and the results are independent from concrete input models. The formal background of verification methods for graph rewriting-based model transformations has become a subject of research recently. In previous work, we have provided fundamental formal and algorithmic background of a (semi-)automated verification approach for graph transformations. This work concludes these components and put them together to introduce the implementation of a verification system fully integrated into a model transformation framework, VMTS. The strong points of our approach is its usability, its implementation in an existing tool, and its extendibility, which are demonstrated on a case study in the application domain of mobile centric social networks. Our results show that the verification of graph rewriting-based model transformations can be largely automated

    Realizing QVT with Graph Rewriting-Based Model Transformation

    Get PDF
    Model-based development is an increasingly applied method in producing software artifacts that is driven by model transformation. For instance, OMG's Model-Driven Architecture as a model-based approach to software development facilitates the synthesis of application programs from models created using customized, domain-specific model processors. Meta Object Facility 2.0 Query/ Views/ Transformation (QVT) is the OMG's standard for specifying model queries, views, and transformations. Extensive research of graph transformation provides a strong formal background for model transformation. The main contribution of this paper is to show how high-level constraint constructs facilitate to realize transformations specified in QVT with metamodel-based model transformation. As a result we can reuse the graph transformation constructs, and its formal background, which facilitates to make QVT transformations validated
    corecore