
Acta Polytechnica Hungarica Vol. 4, No. 1, 2007

 – 89 –

Formalizing the Evaluation of OCL Constraints

Gergely Mezei, Tihamér Levendovszky, Hassan Charaf
Department of Automation and Applied Informatics, Budapest University of
Technology and Economics
Goldmann György tér 3, H-1111 Budapest, Hungary
{gmezei, tihamer, hassan}@aut.bme.hu

Abstract: Domain-specific modeling has growing importance in many fields of software
enginering, such as modeling control flows of data processing, or in man-machine systems.
Customizable language dictionary and customizable notations of the model elements
offered by domain-specific technologies make software systems easier to create and
maintain. However, visual model definitions have a tendency to be incomplete, or
imprecise; the definitions can be extended by textual constraints attached to the model
items. Textual constraints can eliminate the incompleteness stemming from the limitations
of the structural definition as well. The Object Constraint Language (OCL) is one of the
most popular constraint languages in the field of UML and Domain Specific Modeling
Languages. OCL is a flexible, yet formal language with a mathematical background.
Existing formalisms of OCL does not describe dynamic behavior of constraints. Our
research aims at creating an OCL optimization solution and prove its correctness formally.
However, the shortcomings of the existing formalism has led us to create a new formalism.
The paper presents OCLASM, a new formalism for OCL, which can describe both the
semantics and the dynamical behavior of the language constructs, thus, it is capable of
describing proofs of optimization algortihms. OCLASM is based on the Abstract State
Machines technique.

Keywords: OCL, optimization, constraints, Abstract State Machines

1 Introduction and Motivation

Visual languages can accelerate the develepement and maintenance of software
systems. Moreover, the ability to illustrate the structure of a system graphically
means that even non-programmer users can understand the underlying logic. One
family of visual languages are the Domain-Specific Modeling Languages
(DSMLs), which allow creating visual models using a high level of abstraction,
the customization of model rules and notation. The customization abilities of
DSMLs makes easier to understand and handle the problems that made DSMLs
very popular in almost all fields of software engineering including, but not limited

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357289951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

G. Mezei et al. Formalizing the Evaluation of OCL Constraints

 – 90 –

to general software modeling, feature modeling [1], resource editing [2] or control
flow modeling.

Besides the advantages of visual languages, they have weaknesses as well. Visual
model definitions have the tendency to be imprecise, incomplete, and sometimes
even inconsistent. For example, assume a domain describing the cooperation
between computer networks and humans in a man-machine system. A computer
can have input and output connections in the network, but these connections use
the same cable with maximum n channels. Thus, the number of the maximum
available output connections equals the total number of channels minus the current
number of input channels. It is hard, or even impossible to express this relation in
a visual way. The solution to the problem is to extend the visual definitions by
textual constraints. There exist several textual constraint languages, the Object
Constraint Language (OCL) is possible the most popular among them. OCL was
originally developed to create precise UML diagrams [3] only, but the flexibility
of the language made possible to reuse OCL in language engineering, such as in
metamodeling [4]. Nowadays, OCL is one of the most wide-spread approaches in
the field of metamodeling and model transformations. The textual constraint
definitions of OCL are unambiguous and still easy to use.

There exists several commerical and non-commerical domain-specific modeling
tools, which have support for OCL either by interpreters, or by compilers.
Interpreters are easier to implement, but they are not as flexible and efficient as
compilers. The key of efficient constraint handling is to use optimizing OCL
compilers. To our knowledge, currently none of the existing tools support
optimization.

Our research focuses on creating a complete, system-independent optimizing
constraint compiler. We have created three optimizing algorithms (presented in [5]
and in [6]) that can accelerate the validation process by relocating, decomposing
the constraint expressions and by caching the model queries. We have
implemented these algorithms in our tool Visual Modeling and Transformaion
Tool [7]. Besides the pseudo code of the algorithms, preliminary proofs of
correctness were also presented in the mentioned papers. However, when
implementing the algorithms, we have found that formal proofs are required to
ensure the correctnes of the compiler.

OCL has a mathematical definition based on set theory with a notion of object
model and system states. Although this formalism defines the syntax and
semantics of OCL constraints, it does not cover dynamic behavior of the
constraints. This paper presents OCLASM, a new formalism of OCL based on
Abstract State Machines [8]. Our aim is to use this formalism to describe the OCL
language and to prove the correctness of our optimization algorithms. The paper
contains the formalism of one of the optimization algorithms, the
RelocateConstraint algorithm to show how the formalism can be used in practice.

Acta Polytechnica Hungarica Vol. 4, No. 1, 2007

 – 91 –

The paper is organized as follows: Section 2 explains why we have decided to
create a new formalism for OCL instead of extending the existing. The section
elaborates the most important projects in the field of OCL formalism and Abstract
State Machines as well. Section 3 presents the basics of Abstract State Machines.
Section 4 introduces the new formalism technique including the construction of
the formalism and several basic examples. Section 5 shows how OCLASM can be
used in case of Relocateonstraint algorithm. Finally, we summarize the presented
work in section Conclusions.

2 Related Work

2.1 Set Theory and ASMs

The first question to answer is why we have decided to create a new formalism for
OCL instead of using the existing one. Existing formalism does not define the
dynamic behavior of constraints, however set theory is a highly flexible formalism
technique, thus the formalism could be extended to support dynamic behavior. To
show the differences between such an extension and OCLASM, we have to
introduce the properties of ASMs.

Abstract State Machines (ASMs) are formerly known as evolving algebras. ASM
is working on abstract data structures, which are provided with a simple
mathematical foundation. The notation of ASM is based on the mathematically
precise notion of a virtual machine execution, states and state transitions. This
notation is familiar from programming practice. ASM provides a concise way to
define system semantics and dynamic behavior. ASMs are very popular in the
domain of formal specification.

The ASM formalism has several advantages in contrast with the extension of the
original formalism in this field. Firstly, the notation of ASM is easier to use for
proving the correctness of algorithms given by pseudo code. Secondly,
modularization and stepwise refinement is easier to accomplish in ASM. This also
means that the formalism specification of the dynamic behavior can be
hierarchically decomposed. Set theory is a flexible technique, but it uses a low-
level description of the problem space, thus, the description the dynamic behavior
would produce a considerably huge rule set. In case of ASM this problem does not
occur, because ASM allows to choose the level of abstraction used in the
formalism. Therefore, the formalism in ASM can be more concise for our
purposes with respect to OCL optimization.

G. Mezei et al. Formalizing the Evaluation of OCL Constraints

 – 92 –

2.2 OCL and ASM

Abstract State Machines were used in many projects as a mathematical formalism.
This section introduces only a few of these projects, more precisely, the projects in
connection with OCL or modeling, and projects from where our method has
borrowed some basic ideas. Some of the mathematical model formalisms not
based on ASM are also presented.

The book [9] presents a precise approach, which facilitates the analysis and
validation of UML models and OCL constraints. It defines a formal syntax and
semantics of OCL types, operations, expressions, invariants, and pre-
postconditions, and it discusses some of the main problems with the original OCL
specification. Although the book does not use ASM for formalism, it gives a
precise overview about the topic.

The OCL formalism available in set theory is examined in [10]. The paper collects
the elements appearing in OCL standard, but not in the formalism. It presents an
extension of the original formalism to solve these problems.

In [11], an ASM definition for dynamic OCL semantics is presented. This
formalism focuses on the states of the modeling environment and handles the
invariants as atomic units implemented in outer functions. This means that the
formalism handles the effects and the result of the validation, but it does not give
ASM definition for the OCL statements, such as forall, thus, it is not capable
of describing algorithms operating with statements.

ASM definition for Java and Java Virtual Machine (JVM) is elaborated in [12].
This ASM formalism offers an implementation-independent description of the
language and the execution environment. Using this abstract description, several
properties of Java and JVM have been proved. The book contains several
straightforward solutions. Our approach has borrowed the basic idea of
formalization, namely handling the code as an annotated syntax tree from here.

3 Backgrounds

3.1 ASM Basics

In [8], ASMs are introduced as follows. ASMs are finite sets of transition rules of
the form

if (condition) then Updates

Acta Polytechnica Hungarica Vol. 4, No. 1, 2007

 – 93 –

which transform abstract states. Where Condition (referred to as guard) under
which a rule is applied is an arbitrary predicate logic formula without free
variables. The formula of Condition evaluates to true or false. Updates denotes an
infinite set of assignments in the form of f(t1..tn) := t whose execution is
understood as changing (or defining, if it has been not defined before) the value of
the occurring function f at the given arguments.

The notion of ASM states is the classical notion of mathematical structures where
data is provided as abstract objects, i.e., as elements of sets (domains, universes,
one for each category of data) which are equipped with basic operations (partial
functions) and predicates (attributes or relations). The notion of ASM run is the
classical notion of computation in transition systems. An ASM computation step
in a given state consists of executing simultaneously all updates of all transition
rules whose guard is true in the state if these updates are consistent. A set of
updates is called consistent if it contains no pair of updates with the same location.

Simultaneous execution provides of an ASM rule R for each x satisfying a given
condition ϕ:

forall x with ϕ R,

where ϕ is a Boolean-valued expression and R is a rule. We freely use
abbreviations, such as where, let, if then else, case and similar standard notations
which are easily reducible to the above basic definitions.

A priori no restriction is imposed either on the abstraction level or on the
complexity or on the means of the function definitions used to compute the
arguments and the new value denoted by ti, t in function updates. The major
distinction made in this connection for a given ASM M is that between static
functions which never change during any run of M and dynamic ones which
typically do change as a consequence of updates by M or by the environment. The
dynamic functions are further divided into four subclasses. Controlled functions
are dynamic functions which can directly be updated by and only by the rules of
M. Monitored functions are dynamic functions which can directly be updated by
the environment only. Interaction or shared functions are dynamic functions
which can directly updated by rules of M and by the environment. Derived
functions are dynamic functions which cannot be directly updated either by M or
by the environment, but are nevertheless dynamic, because they are defined in
terms of static and dynamic functions.

3.2 The Mathematical Definition of ASM

In an ASM state, data is available as abstract elements of domains which are
equipped with basic operations represented by functions. Relations are treated as
Boolean-valued functions and view domains as characteristic functions, defined

G. Mezei et al. Formalizing the Evaluation of OCL Constraints

 – 94 –

over the superuniverse which represents the union of all domains. Thus, the states
of ASMs are algebraic structures, also called algebras.

Definition 1 A vocabulary (also called signature) Σ is a finite collection of
function names. Each function name has an arity, which is a non-negative integer
representing the number of arguments the function takes. Function names can be
static or dynamic. Nullary function names are often called constants; but the
interpretation of dynamic nullary functions can change from one state to the next.
Every ASM vocabulary is assumed to contain the static constants undef, True and
False.

Definition 2 A state of the vocabulary Σ is a non-empty set X, together with
the interpretation of the function names of Σ, where X means the superuniverse of

. If f is an n-ary function name of Σ, then its interpretation
f is a function from Xn into X; if c is a constant of Σ, then its interpretation
c is an element of X. The superuniverse X of the state is denoted by | |.

The elements of the state are the elements of the superuniverse of the state and,
according to the definition, the parameters of the functions are also elements of
the superuniverse. The new elements come from reserve, which is a set whose role
is to provide new elements whenever needed.

Definition 3 An abstract state machine M consists of a vocabulary Σ, an initial
state for Σ, a rule definition for each rule name, and a distinguished rule name
called the main rule name of the machine.

4 ASM for OCL

4.1 Overview

OCLASM has been created to formalize the evaluation of constraints, OCLASM
acts as an interpreter for OCL constraints. The same functions and the same rule
set are used regardless of the constraint or the underlying model. This property of
OCLASM is essential, since the OCLASM has been created as a generic
formalism for OCL.

States of OCLASM represent the state of execution at a certain point of time. A
state can be considered as an internal state of the evaluating environment, which is
evolved by the rule set of OCLASM. States describe for example which
expression is under evaluation or which local variables are available. The rules of
OCLASM are used to navigate between the states when running the validation.

Acta Polytechnica Hungarica Vol. 4, No. 1, 2007

 – 95 –

It is important that the states do not contain any particular information about the
underlying model (the model to validate), since (i) OCL cannot change the
underlying model by the definition of OCL [3], and (ii) the validation must be
platform independent. Similarly, states do not describe the constraints directly, but
the expressions of the constraints are obtained by a monitored function.

The presented approach is similar to the method published in [12] in several
aspects, where the constraint expression is handled as the sequence of
programming statements and expressions. The execution of the constraint is a
step-by-step execution of these programming units. At each position, the
corresponding expression or statement is evaluated or executed, and then the
evaluation proceeds to the next programming unit. The method is also similar to
traversing the annotated abstract syntax tree of the constraint.

4.2 Monitored and Shared Functions

Obtaining the model items and the phrases of constraint expressions is handled by
monitored functions. This solution ensures that the modeling environment and the
evaluation environment are independent from the dynamic behavior of the
constraint formalized by the OCLASM.

The underlying model extends the original model structure definition used in
OCL: it consists of model nodes, attributes and relationships (not restricted to
UML types). Attributes are either of primitive types or of complex attributes
containing several sub-attributes. Model nodes can contain attributes (both
primitive and complex attributes). The attribute and modeling structure described
in [13] is used, which can extend the UML-based modeling structure to an n-level
metamodeling hierarchy. This generic structure allows extending OCL to domain-
specific languages as well [4]. The extension of the underlying modeling structure
means that OCLASM can be used not only to describe the dynamics of constraint
evaluation, but to formalize constraints for domain-specific models as well.

Both model nodes and attributes are identified by a unique ID (a literal
expression), the universe of IDs is shared between the two different constructs.
This uniformity helps reducing the number of monitored functions (for example,
node-node and node-attribute navigations can be handled uniformly). To
differentiate attributes and normal model nodes, there is a IsModelNode(ID)
function defined.

To simplify handling of attributes the function AttrValue(ID) is used. The function
returns undef for complex attributes, but returns a primitive value for primitive
attributes. Primitive value in this context means that the type of the value is
Boolean, number or string.

To express the meta level- instance level relationship the Meta(ID) function is
used, which returns the meta item of the instance level item identified by ID. This

G. Mezei et al. Formalizing the Evaluation of OCL Constraints

 – 96 –

function is essential to capture different instantiation techniques (for example the
instantiation of UML [14] and VMTS [15]).

Navigation between model items is handled by two functions. The function To(ID,
Dest) works on the model level, the ID identifies the source model item, while
Dest selects target items. The function returns all nodes or attributes which can be
reached from the model item using a relation where the destination name is Dest.
The result of the function is a list of possible destinations. Note that the list
contains either model item IDs, or attribute IDs, but not both of them, because
OCL does not allow this kind of polymorphism (attribute queries and navigations
could not be distinguished).

The Mul(ID, Dest) (‘Mul’ stands for Multiplicity) function is another function to
handle relations between model items. It works on the metamodel level, thus, the
model definition is checked instead of the concrete models. The function Mul
checks the minimum and the maximum multiplicity of the given relation
according to the metamodel. It returns four integers as a list, the
minimum/maximum multiplicity of the source/destination side.

OCLASM uses a shared function GetPhrase(Position) as well. Phrases are basic
syntactic constructs (programming statements and expressions) available in OCL.
A Phrase has a string attribute PhraseType (e.g. ‘NavigationCall’). Phrases can
contain other Phrases as children. For example, an iteration Phrase can have an
iterator variable declaration Phrase, an iteration condition Phrase and an iteration
core block Phrase. The function GetPhrase returns a Phrase of the constraint
identified by the parameter Position. Position is a value from the universe of all
possible positions of Phrases of the constraints (the universe is referred to as Pos).
If the constraint is handled as a syntax tree then Phrases are the nodes of this tree
and the universe of Pos contains the pointers to the nodes. Note that the function
is marked as shared, which means that it can be updated by the environment, or by
the rules of OCLASM. This duality is required, because in general, constraints are
defined outside the scope of OCLASM, but certain algorithms can modify the
original constraints. For example an optimization algorithm can restructure the
expressions of constraints in order to improve the performance.

Child(Position, I) is another shared function. It obtains the Ith children Phrase of a
complex Phrase (a Phrase which has children). The first parameter of the function
is the (valid) position of the complex Phrase. If the Phrase does not have a child
at the selected index, then the function returns undef. The function
Parent(Position) implements the reverse direction: it obtains the position of a
Phrase and returns the position of the container Phrase. These functions are
shared functions for the same reason as GetPhrase. Note that Child and Parent
functions are always synchronized automatically by the framework.

Acta Polytechnica Hungarica Vol. 4, No. 1, 2007

 – 97 –

4.3 Dynamic Functions

Constructs of OCL, for example iterate or navigate, are mainly defined as rules in
OCLASM. Dynamic functions help to store the current state of the evaluation
environment when the rules are applied. For example, navigate operation selects a
new model item, which is used as the origin of all further operations. Dynamic
functions are just like helper variables in the environment framework.

To obtain the current position of evaluation, the position of the Phrase currently
under execution, the function CurrentPos() is used. The return value of the
function is a position from the universe Pos.

The dynamic function Type(Pos) is used to handle the type of the different (OCL)
expressions uniformly. Its parameter is the position of the target expression. The
return value of the function can be one of the basic types defined in OCL, such as
real, integer, or tuple.

The value of the expressions are handled similarly to the type function: the unary
function Value(Pos) retrieves the position of the expression and returns its value.
Using the notation of common programming languages, such as C, the difference
between GetPhrase(pos) and Value(pos) is the following: GetPhrase(pos) is
similar to a pointer. In contrast, Value(pos) is the value in the pointed memory
block.

OCL allows the user defining local variables. In OCLASM, these variables are
handled by the function Local(Name). The function has one input parameter: the
name of the variable. The function Local returns the position of a variable
declaration expression. When defining a new local variable, then a new position is
created using the reserve. Variable declarations contain the name, type and value
of the variable. If a local variable is requested by its name and there is no local
variable defined with the given name, then the function returns undef. The name
of the local variables are handled by the unary function Name, which has one
input parameter, the position of the variable expression. Name returns the name of
the local variable as a string, or undefined if the position is not a valid variable
definition.

OCLASM handles all four types of collections (Set, OrderedSet, Bag and
Sequence) by arrays indexed by integer numbers. Indexing is denoted by brackets.
The items in the arrays are the items in the collections, for example,
Value(Position)[3] means the third item in the collection: expression at the
position Position. The arrays can be traversed by the forall expression of ASM,
obtaining every element. According to the default notation of ASM [8] the length
of collection is denoted as l(Value(Position)), where Position is the position of the
expression.

Tuple types are also handled as arrays indexed by integer values, the definition of
tuple items are stored in lists with two elements (name – value pairs), these lists

G. Mezei et al. Formalizing the Evaluation of OCL Constraints

 – 98 –

are list items of the array representing the tuple. For example, the expression
Tuple(x: Integer = 5, y: String = 'Ok') results an array with two items:
TupleArray[1] = [‘x’, Integer = 5], while TupleArray[2] = [‘y’, String
= 'Ok']. When a tuple item is queried by its name, then OCLASM tries to find
an item in the associated array with the name and updates the Type – Value
functions. In the previous example if the tuple item with name ‘y’ is requested,
then OCLASM checks TupleArray[1], but its name (‘x’) does not match, thus, it
advances to TupleArray[2]. Since the name is found, OCLASM sets the Type of
the current position to ‘String’ and the Value to ‘Ok’.

4.4 Vocabulary and Universes

Using the previously defined functions, the syntax of OCLASM can be defined:

Definition 4 The vocabulary ΣOCLASM of the OCLASM formalism is assumed to
contain the following characteristic functions (arities are denoted by dashes):

• Monitored functions: IsModelItem/1, AttrValue/1, Meta/1, To/2, Mul/2

• Shared functions: GetPhrase/1, Child/2, Parent/1

• Dynamic functions: CurrentPos/0, Type/1, Value/1, Name/1, Local/1

Definition 5 The superuniverse | | of a state of ΣOCLASM is the union of six
universes:

• The universe of Phrases (basic syntactic constructs of OCL)

• The universe of possible positions of Phrases in the constraints

• The universe Boolean (true/false/undef)

• The universe of finite lists of numbers

• The universe of finite lists of finite strings

• The universe of finite lists of possible identifiers (IDs) for model items
and attributes

4.5 Transition Rules

Transition rules describe how the states of OCLASM change over time by
evaluating expressions and executing statements of the input program. The main
idea is to create a rule for each type of language constructs available in OCL. For
example OCLASM has rules for iterate, navigation, or variable declaration
actions. These rules describe the semantics of the expression and manage dynamic
functions.

Acta Polytechnica Hungarica Vol. 4, No. 1, 2007

 – 99 –

OCLASM a central rule called eval. The rule eval is a rather complex rule, it has a
switch-case block with many branches, more precisely for each type of language
constructs, eval has a branch (see sketch of the rule below). It checks the type of
the parameter Phrase and executes the appropriate branch by calling the rule
associated with the PhraseType. Therefore, eval acts as a mapping function
between Phrases and rules of OCLASM. Moreover, eval helps calling the rules
with the appropriate parameters (it adds sub-expressions as parameters, using the
Child function). Updating the value of CurrentPos is also handled by eval.

1. rule eval(Phrase)
2. {
3. CurrentPos():=Phrase;
4. switch(PhraseType(Phrase))
5. {
6. case ‘VariableDeclaration’:
7. VariableDeclaration(Child(Phrase,1), Child(Phrase,2),
8. Child(Phrase,3));
9. case ‘NavigationCall’:
10. Navigate(Child(Phrase,1), Child(Phrase,2);
11. …
12. }
13. }

The initial position of OCLASM sets the CurrentPos to the start position of the
outermost constraint expression and sets the value of all other dynamic functions
to undef for all possible parameters. A run of OCLASM is started by calling eval
for the start position. When the run of the state machine of OCLASM is finished
then the outermost expression holds a single value. If the evaluated constraint was
an invariant, then this value shows whether the model was valid.

4.6 Invariants

OCLASM, as presented until this point is useful to simulate the execution of a
simple or complex OCL expression, but not a whole constraint, such as an
invariant. This definition is the core of OCLASM, but the presented approach can
be extended in order to support OCL invariants or pre and post conditions. The
current description shows how invariants can be formalized.

1. rule CheckModelInvariants(Invariants)
2. {
3. forall(Invariant in Invariant)
4. {
5. forall (ID in {∀ID: ModelItem(ID)= true})
6. {
7. if (Invariant.Context) = Meta(ID))
8. {
9. CurrentPos():=Invariant.StartPosition;
10. Local():=undef;
11. if (not eval(CurrentPos())
12. {
13. print “The model is not valid.”;

G. Mezei et al. Formalizing the Evaluation of OCL Constraints

 – 100 –

14. exit;
15. }
16. }
17. }
18. }
19. }

To have this rule as part of OCLASM, the universe of Invariants must be added to
the superuniverse in Defintion 5. Invariants have a Context property and a pointer
to the outermost expression in the invariant. The extended OCLASM presented in
this section is referred to as OCLASMInv to differentiate from the original
OCLASM definition. Pre and post conditions can be handled similarly resulting a
family of OCLASM formalisms.

4.7 Examples

Although the OCLASM formalism presented in this paper is capable of describing
all OCL operations, we present only a few rules showing the method in practice.
Other operations can be formalized similarly.

Firstly, a very simple rule, the VariableDeclaration is shown. The function eval
obtains the position of the children expressions (variable name, type and init
value) and executes them before this rule is executed.

1. rule VariableDeclaration(VarName, VarType, VarInit)
2. {
3. Name(CurrentPos) = Value(VarName)
4. Type(CurrentPos) = eval(VarType)
5. if (VarInit!= undef)
6. Value(CurrentPos) = eval(VarInit)
7. else
8. Value(CurrentPos) = undef
9. endif
10. }

Secondly, the rule for iterate operations is presented. It is essential to formalize
this operation, because every other collection operation can be accomplished by
using iterate [1]. For example, the collection operation count() can be simulated
by an iterate expression

iterate(i : Integer, r Integer = 0 | r+1).

The node iterate has exactly four children in the abstract syntax tree: (i) the
collection where the operation is applied; (ii) the declaration of the iterate
variable, (iii) the declaration of the result variable, and (iv) the iteration body.

1. rule iterate(CollectionDef, IteratorDecl, ResultDecl, Iteration)
2. {
3. eval(CollectionDef);
4. eval(IteratorDecl);
5. eval(ResultDecl);

Acta Polytechnica Hungarica Vol. 4, No. 1, 2007

 – 101 –

6. Local(Name(ResultDecl)):= new(Pos);
7. Value(Local(Name(ResultDecl))):= Value(ResultDecl);
8. Type(Local(Name(ResultDecl))):= Type(ResultDecl);

9. forall collectionElement in Value(CollectionDef)
10. Local(Name(IteratorDecl)):= new(Pos);
11. Value(Local(Name(IteratorDecl)))= collectionElement
12. Type(Local(Name(IteratorDecl))) = Type(IteratorDecl)
13. eval(Iteration);
14. endfor

15. Local(Name(IteratorDecl))= undef;
16. Value(CurrentPos) = Value(Local(Name(ResultDecl)));
17. Type(CurrentPos) = Type(Local(Name(ResultDecl)));

18. Local(Name(ResultDecl))= undef;
19. }

The third example shows the rule constructed for navigation expressions. Here the
model-based, external functions are also used. The rule evaluates the origin,
namely, it obtains the model item which is the starting point of the navigation. As
next, the rule checks the multiplicity of the rule, if it allows exactly one
connection, then the result is a ModelItem, in any other case the result is a
collection of ModelItems. Since the function To always returns a list (with the IDs
of the destination nodes), in the first case the first element of the result array is
used (To(Value(Origin), DestName)[0]). In this case the type of the result
is the ID of the meta node of the destinations node. If the multiplicity is not 1, then
a new collection is created and returned.

1. rule Navigate(Origin, DestName)
2. {
3. eval(Origin);
4. if (Mul(Value(Origin),DestName)[2]==1 and
5. Mul(Value(Origin),DestName)[3]==1 and
6. IsModelNode(To(Value(Origin),DestName)[0]))
7. {
8. Value(CurrentPos)= To(Value(Origin),DestName)[0]
9. Type(CurrentPos) = ‘ModelItem’
10. }
11. else
12. {
13. Type(CurrentPos) = ‘Set’
14. Value(CurrentPos) = Set()
15. forall ModelId in To(Value(Origin),DestName)
16. Append ModelId in Value(CurrentPos)
17. endfor
18. }
19. }

G. Mezei et al. Formalizing the Evaluation of OCL Constraints

 – 102 –

5 Application of the Formalism

5.1 The Relocation Algorithm

This section introduces how OCLASM can be used to prove the correctness of a
dynamic algorithm working on OCL constraints. The RelocateConstraint
algorithm is an optimization algorithm for OCL, it has been presented in [5] and in
[6]. The main idea behind the algorithm is to reduce the time-consuming model
queries, if it is possible. Therefore, the algorithm tries to relocate OCL invariants
defined by the user to another context, where the evaluation requires the least
model queries. Using OCLASM, it is possible to give a formal proof of
correctness for the algorithm.

The algorithm applies the relocation always between adjacent nodes. In other
words, the original and the new context of the constraint are always connected in
the metamodel. This limitation does not restrict the optimization capabilities of the
algorithm (as shown in [6]). Note that this does not mean that the nodes of the
original context and the new context are connected on the instance level as well.
This is because checking invariants is based on meta level (see algorithm X in
section Y) and metamodels can allow zero multiplicity between the elements. Our
research has shown [6] that the correctness of relocation is heavily affected by the
multiplicities on the source and on the destination side.

The algorithm is defined as a rule, which runs before eval is called with the
outermost position of the invariant. The algorithm modifies the constraints by
updating the GetPhrase and Child functions. To simplify the rule it is worth
defining formulas and helper rules:

ϕA.Dest(Phrase, IDA, Dest) = Value(eval(Child(Phrase,0))) = IDA and

 Value(Child(Phrase,1)) = Dest

ϕA.x (Phrase, IDA, Dest) = Value(eval(Child(Phrase,0))) = IDA and

 Value(Child(Phrase,1)) <> Dest

If the original context is A and the new context is B then ϕA.Dest expresses that the
Phrase is a navigation from A to B, while ϕA.X expresses that the Phrase is a
navigation from A to anywhere, but not to B. The formulas use the information
that the first (0th) child of navigations (to model nodes and attributes) is the origin,
while the second (1st) child is the name of the destination.

ForallCheck():= ∃ModelPhrase: GetPhrase(ModelPhrase)<> undef and

(ϕA.x(ModelPhrase,0,D) or (ϕA.Dest(ModelPhrase,0,D)
and Parent(ModelPhrase).PhraseType<>’ForAll’))))

This derived helper function returns true, if (i) there is navigation/attribute call
from A to x (x<>B), or (ii) there is a navigation from A to B and the outermost
phrase in the constraint has a specific type (‘ForAll’).

Acta Polytechnica Hungarica Vol. 4, No. 1, 2007

 – 103 –

GetSrc(ID, Dest) := { Src: if ∃ID2: ID2 ∈ To(ID,Dest) and
 ID ∈ To(ID2, Src)
 undef, otherwise

This derived helper function obtains the name of the source side of navigations.
For example there is a navigation between A and B, we can navigate from A to B
using the destination name “B”. This function obtains the reverse direction,
namely to source name, which is used in navigation from B to A.

Top(Phrase) := Phrase, if Parent(Phrase)=undef
 PhraseTOP, if ∃PhraseTOP :

PhraseTOP= Top(Parent(Phrase))

This derived function tries to find the outermost Phrase of the constraint by using
a recursive method.

1. rule AddChild (Type,Parent,Idx)
2. {
3. Child(Parent, Idx):= new(Pos);
4. GetPhrase(Child(Parent, Idx)):= new (Phrase);
5. GetPhrase(Child(Parent, Idx)).PhraseType:= Type;
6. }

1. rule AddBackNavigation(Phrase, WithForallCheck)
2. {
3. if (WithForallCheck and (ForallCheck() and Mul(O,D)[1]>1))
4. {
5. AddChild(‘VariableCall’,Phrase,0);
6. AddChild(‘OrigSelf’, Child(Phrase,0), 0);
7. }
8. else
9. {
10. AddChild (‘NavigationCall’, Phrase,0);
11. AddChild (‘SelfReference’,Child(Phrase,0),0);
12. AddChild (GetSrc(O,D),Child(Phrase,0),1);
13. }
14. }

These helper rules are used to automate the repeatable parts of the main relocation
rule. The first rule creates a new Phrase with the given type and adds it as a child
of the parameter Phrase. This rule is used when the algorithm inserts new
expressions into the constraint. The rule AddBackNavigation inserts a complete set
of Phrases as a child of the parameter Phrase. The rule has two different modes
according to the second parameter, the result of ForallCheck function and the
multiplicity on the source side. The first mode creates phrases that call a variable
with the name ‘OrigSelf’, while the second mode inserts phrases implementing a
navigation call from the new context to the original context. The reason while the
modes are differentiated is explained later.

G. Mezei et al. Formalizing the Evaluation of OCL Constraints

 – 104 –

1. rule RelocateConstraint(O, D)

2. if (Mul(O,D)[2]=0)
3. {
4. exit (“Relocation error.”)
5. }

6. if (Mul(O,D)[0]=0)
7. {
8. AddChild (‘IfExpr’, undef ,0);
9. AddChild (‘IsEmpty’, Child(undef,0) ,0);
10. AddBackNavigation(Child(Child(undef,0), 0), false);
11. Child(Child(undef,0), 1):= Top(ModelPhrase);
12. Child(Child(undef,0), 2):= True;
13. }

14. if (Mul(O,D)[1]>1 and ForAllCheck())
15. {
16. AddChild (‘ForAll’, undef ,0);
17. AddBackNavigation(Child(undef,0), false);
18. AddChild (‘IteratorVariable’, undef ,1);
19. Value(Child(undef,1)):=’OrigSelf’;
20. Child(Child(undef,0), 2):= Top(ModelPhrase);
21. }

22. forall (ModelPhrase in {∀Phrase: GetPhrase(Phrase)<> undef and

(Phrase.PhraseType=’AttributeCall’ or
Phrase.PhraseType = ‘NavigationCall’)})

23. {
24. if (ϕA.Dest(ModelPhrase,0,D))
25. {
26. if (Mul(O,D)[3]>1)
27. {
28. if (Parent(ModelPhrase).PhraseType=’ForAll’)
29. {
30. GetPhrase(Parent(ModelPhrase)):=
31. GetPhrase(Child(Parent(ModelPhrase),2));
32. }
33. else
34. AddBackNavigation(ModelPhrase, true);
35. }
36. else
37. ModelPhrase:= Child(ModelPhrase, 0);
38. }
39. else
40. AddBackNavigation(ModelPhrase, true);
41. }
42. endrule

The rule is relatively complex; different cases are summarized in Table 1. The
table shows the different cases based on the multiplicities on the source side (rows
of the table) and on the destination side (columns of the table). The table
summarizes the special constructs used in different cases, each cell has the
corresponding line numbers for the constructs in the rule. The basic relocation
case can be found at line 37 and 40 in the rule. Recall that the explanation why we
distinguish these cases can be found in [6].

Acta Polytechnica Hungarica Vol. 4, No. 1, 2007

 – 105 –

 <1 1 >1

<1 Not allowed
(#2-5)

Add Filter
(#6-13)

Add Filter, ForAll check
(#6-13; #28-34)

1 Not allowed
(#2-5)

No spec.

ForAll check
(#28-34)

>1 Not allowed
(#2-5)

Add ForAll
(#14-21)

Add ForAll, ForAll check
(#14-21; #28-34)

Table 1
Relocation overview

5.2 Proof of Correctness

The algorithm applied by the RelocateConstraint rule is correct, if none of the
constructs (modification of the constraint) modifies the result of validation, i.e. if
the set of valid models remains the same. Therefore, the presented proof shows
that the steps of the rule are correct by mapping expressions of the original
constraint to expressions in the new constraint and show that they are equivalent.
The proof uses the CheckModel rule from section 4.6. For sake of simplicity, the
condition expression at line #11 in the algorithm is referred to as
‘ValidModelCheck’. We refer to sections of the rules as Rule(#From-To), for
example RelocateConstraint(#2-5). Note that the aim of the proving method is to
show the equivalency of the original and the relocated constraint, therefore, it is
not stressed whether the rule RelocateConstraint is optimal.

To distinguish the original and the relocated constraints we use the labels ‘old’
and ‘new’, for example Cold (that is the original constraint), or selfold (self reference
of the original constraint) Furthermore, for sake of simplicity we suppose that the
original context type was A, while the new context type is B. The instantiations of
type A are a1, a2 … an (collected in a set InstA), the instantiation of type B are b1,
b2… bn (collected in the set InstB). B can be reached from A using the name Dest
(To(ai,Dest)=bj) while the reverse direction uses Src (To(bi,Dest)=aj).
If the model allows zero multiplicity, then one of the following formulas are true:

ϕZeroOnSrc: Mul(A,Dest)[0] = 0
ϕZeroOnDest: Mul(A,Dest)[2] = 0

We prove that the algorithm is always correct in these cases, then we formalize
other possible cases as follows:

ϕExactlyOne: Mul(A,Dest)[1]=1 ∧ Mul(A,Dest)[3]=1
ϕManyOnSrc: Mul(A,Dest)[1]>1 ∧ Mul(A,Dest)[3]=1
ϕManyOnDest: Mul(A,Dest)[1]=1 ∧ Mul(A,Dest)[3]>1
ϕManyBoth: Mul(A,Dest)[1]>1 ∧ Mul(A,Dest)[3]>1

G. Mezei et al. Formalizing the Evaluation of OCL Constraints

 – 106 –

If the constraint does not contain any model query, then the constraints results in a
simple Boolean value true, or false. The result does not depend on the underlying
model, thus it is always true, or false.

If this constant result is true, then it means that all possible models are valid. This
means that ValidModelCondition is always satisfied, thus, the inner forall
expression at CheckModel(#5-17) can be replaced by a constant true value.
Therefore Cnew always evaluates to true as well.

If this constant result of the constraint is false (no model is valid, which contains a
model item of the selected type), then ValidModelConditionOld is not satisfied for
instances of A, while ValidModelConditionNew is not satisfied for instances of B.
Therefore, the relocation of the constraint is not correct if InstA, or InstB is empty.

InstB can be empty only if formula ϕZeroOnDest holds (zero multiplicity is allowed
on the destination side). This case is handled at RelocateConstraint(#2-5): the
condition checks whether for each ai there exists at least one bi, more generally
that there is a bi in the model, which can be used as a host for the constraint (host
nodes of a constraint are nodes, in which the constraint is defined). If not, then the
rule throws an error message.

Similarly, InstA can be empty if formula ϕZeroOnSrc holds. The problem is solved by
the condition at RelocateConstraint(#6-13), which ensures that the constraint is
evaluated only to those bjs which are connected to at least one ai (otherwise it
returns with a constant true). Thus, if InstA is empty, then the constraint is not
evaluated.

As result of the conditions at RelocateConstraint(#2-13), the following formulas
always hold:

ϕAToB: ∀i: Meta(i)=A → (∃j, ∃Dest: Meta(j)=B ∧ j∈To(i, Dest))

ϕBToA: ∀i: Meta(i)=B → (∃j, ∃Src: Meta(j)=A ∧ j∈To(i, Src))

Note that these formulas ensure also that the relocation of constraints without
model queries is always correct.

If the constraint contains model queries, then the result of eval at
CheckModel(#11) can be affected by the navigations and attributes of ai. The
relocation is correct if the result of model queries in the original context is the
same as the result in the new context. Different cases are indexed by the formulas
defined above:

ϕExactlyOne: RelocateConstraint(#37) and RelocateConstraint(#40) are used.
RelocateConstraint replaces navigations from A to B with a self reference. Instead
of selfOld.Dest the new constraint has a selfNew expression
(RelocateConstraint(#40)). According to the rules of OCLASM, the value of
selfOld.Dest is retrieved by the monitored function call To(ai,”Dest”), which results
bj, an instance of B. Since formula ϕAtoB holds, thus this bj always exists, therefore

Acta Polytechnica Hungarica Vol. 4, No. 1, 2007

 – 107 –

the expression To(ai,”Dest”) can be replaced by the value bj for this certain
navigation expression for this certain ai. However, the constraint is cheked against
all ais (CheckModel(#7)), thus To(ai,”Dest”) is always replacable by an
appropriate bj. In the relocated constraint this replacement is done by using the
new self reference. Note that relocation does not create false host nodes (nodes
which could not affect the resul of the original constraint, but could affect the
result of the relocated version) for the constraint (due to ϕBtoA.).

RelocateConstraint inserts a navigation expression from B to A
(RelocateConstraint(#37)) before any navigations/attribute queries from A to
anywhere, but not B. The expression selfOld.x (where x is not “Dest”) is replaced
by selfNew.Src.x. Proving is similar to the previous case, but on the reverse
direction. Since the formula ϕBtoA holds, thus selfNew.Src which results in a To(bi,
“Src”) can be replaced by the value aj for this certain navigation/attribute
expression for this certain bi. Moreover, the new constraint is cheked against all
occurences of bi (CheckModel(#7)), thus To(bi,”Src”) is always replacable by an
appropriate aj. Therefore, the value of selfOld always equals with the value of
selfNew.Src. Note that relocation does not delete host nodes because of ϕAtoB.

ϕManyOnDest: The section RelocateConstraint(#28-34) and RelocateConstraint(#40)
are applied. Correctness of navigations of the form selfOld.x, where x <> “Dest” is
ensured by RelocateConstraint(#40) according to constructs used in ϕExactlyOne.
However, the result of navigations from A to B results in a set of bis. The
condition at RuleConstraint(#28) checks whether the result of the navigation
expression is used in a forall construct, if so, then the original expression is
replaced by the inner expression of forall. Thus, selfOld.Dest → forall(ExpOld) is
transformed into ExpNew. In OCL, forall(Exp) is a set operation, which is true only
if Exp is satisfied for each item in the set. Therefore, the original expression
selfOld.Dest → forall(Exp) is true for a certain ai, if Exp is true for each bj∈ To(ai,
Dest). This means that the original expression in a certain ai can be replaced by
ExpNew in bj∈To(ai, Dest). The original constraint is evaluated for each ai, thus the
replacement is correct in each bj connected to one of the ais. Moreover, since
ϕBToA holds, thus, bjs are always connected to an ai. This means that the relocation
is always correct in this case.

If the condition at RelocateConstraint(#28) is not satisfied, then replacement
inserts a navigation back to the original constraint and the expression is evaluated
there. The expression selfOld.Dest is replaced by selfNew.Src.Dest. Because of ϕBToA
this replacement is always correct as shown constructs used in ϕExactlyOne.

ϕManyOnSrc: The section RelocateConstraint(#14-21) and RelocateConstraint(#38)
are applied. Correctness of navigations of the form selfOld.Dest is granted by
RelocateConstraint(#38) according to constructs used in ϕExactlyOne. However,
navigations from B to A results in a set of ais. The condition at
RelocateConstraint(#14) checks whether such navigation is required (using the
rule ForAllCheck). Backward navigation to the original constraint is required in

G. Mezei et al. Formalizing the Evaluation of OCL Constraints

 – 108 –

the case of selfOld.x expressions (where x <> “Dest”), or if Mul(A,Dest)[1]>1
according to constructs used in ϕManyOnDest. Here only the first case is possible,
which is handled by adding a forall expression to the constraint during relocation
(RelocateConstraint(#15-21)). The new forall expression encapsulates the whole
constraint and it simulates the backward navigation using the iteration variable
‘OrigSelf’, where navigation expressions are replaced by variable calls in
AddBackNavigation(#5-6). Therefore, the constraint … selfOld.x … is
transformed into selfNew.Src→forall(OrigSelf | … OrigSelf.x …).

For a certain expression and bj, the replacement is correct for ais connected to bj.
Since ϕAtoB holds, thus, each ai is connected with at least one bj and evaluation
checkes each bj of the model, thus, the replacement is correct for all ais of the
model. Note that the outermost forall expression ensures that different
navigation/attribute calls of the constraint are using the same ai (since the value of
OrigSelf does not change), thus the attributes/navigation of ais are not mixed up.

ϕManyOnBoth: RelocateConstraint(#14- 21) and RelocateConstraint(#28-34) are
used. Firstly an encapsulating forall expression is added if there is a
navigation/attribute call of form selfOld.x (where x<>”Dest”) or a selfOld.Dest
expression without forall. The construction from ϕManyOnSrc. Secondly, the forall
expressions of the original constraint are replaced according to constructs used in
ϕManyOnDest.

The replacement of the expression selfOld.x (x<>”Dest”) in a certain ai is correct
for each bj∈To(ai, Dest) according to constructs used in ϕManyOnSrc Moreover, the
replacement of these type of expressions is also correct in general (because of
ϕAtoB). However, it is possible that the expression is evaluated in a certain ai more
then once (more precisely once for each element of To(ai, Dest)).

The replacement of the expression selfOld.Dest →forall is correct according to
constructs used in ϕManyOnDest. Multiplicity ‘MoreThanOne’ on the source side does
not affect this correctness, because the updated expressions use navigations only
from context B, thus, it is not important how many ais are connected with the
current bj.

This is not the case with expressions of form selfOld.Dest->Exp, where Exp is not
forall. Here navigation back to the original context is mandatory, thus the original
expressions is transformed into selfNew.Src.Dest->Exp. Relocation is correct in this
case if the value of selfOld can be replaced by selfNew.Src. However, the function
ForAllCheck returns true at the condition at RuleConstraint(#14), which means
that the constraint is encapsulated by a new forall as in ϕManyOnSrc. This forall
expression ensures that for a certain bj, the constraint is evaluated for all items of
the set selfNew.Src seperately (for all ais connected with bj). Moreover ϕBtoA holds,
which means that all ais are checked by the relocated constraint. This means that
the relocation is correct in this case as well.

Acta Polytechnica Hungarica Vol. 4, No. 1, 2007

 – 109 –

The possible multiplicity combinations were tested, we have proved that the
RelocateConstraint rule is correct in all cases.

Conclusions

Textual constraints are useful in order to extend visual model definitions and
create precise models. OCL is one of the most popular textual constraint language,
it is used to provide precise, unambiguous definitions in several modeling
techniques such as UML, or metamodeling techniques in general. One of the key
features of OCL is the mathematical formalism based on set theory with a notion
of an object model and system states. This formalism describes the syntax and
semantics of OCL and it can prove the completeness of the models using OCL,
but it does not contain the definition of constraint evaluation, dynamic behavior of
the constraint expressions. Due to this limitation of the OCL formalism, it cannot
be used to prove the correctness of dynamic, OCL manipulating algorithms, for
example our optimization algorithms.

This paper has presented OCLASM, a new formalism for OCL. The paper has
presented the main reasons, why a new formalism was created instead of
extending the original formalism, or one of its extensions. The new formalism is
based on the popular ASM technology, it can be used to study the dynamic
behavior in a compact, yet rigorous way. The basic idea of the formalism is to
create rules for all language expressions, such as iterate, and use these rules to
simulate the validation. OCLASM handles the constraints as a sequence of
statements and expressions and it navigates through these programming units
using a function pointing to the current expression. Model-based operations and
constraint expression retrievals use monitored (external) functions showing that
constraint validation must be independent from the current model and constraint
representation. The mechanism of the formalism method has been shown
including how to handle language construct, such as tuple types, or collections.
The formal definition of OCLASM has also been presented and the paper also
includes several rules for the most important language constructs. Using the new
formalism of OCL, it is possible to create and validate algorithms based on OCL.
The paper has shown how to use OCLASM in order to define RelocateConstraint
algorithm (which is used in constraint optimization) and how to prove its
correctness formarly. Future work mainly consists of continuing this work and
prove the correctness of other optimization algorithms as well.

Acknowledgement

The paper is established by the support of the National Office for Research and
Technology (Hungary).

References

[1] L. Lengyel, T. Levendovszky, H. Charaf: Constraint Handling in Feature
Models, 5th International Symposium of Hungarian Researchers on
Computational Intelligence, 2004

G. Mezei et al. Formalizing the Evaluation of OCL Constraints

 – 110 –

[2] L. Lengyel, T. Levendovszky, G. Mezei, B. Forstner, I. Kelényi, H. Charaf:
Model-based System Development for Embedded Mobile Platforms,
ECBS, pp. 43-52, 2006

[3] J. Warmer, A. Kleppe: Object Constraint Language, The: Getting Your
Models Ready for MDA, Second Edition, Addison Wesley, 2003

[4] G. Mezei, L. Lengyel, T. Levendovszky, H. Charaf: Extending an OCL
Compiler for Metamodeling and Model Transformation Systems: Unifying
the Twofold Functionality, INES 2006

[5] G. Mezei, T. Levendovszky, H. Charaf: An Optimizing OCL Compiler for
Metamodeling and Model Transformation Environments, Working
Conference of Software Engineering, 2006

[6] G. Mezei, T. Levendovszky, H. Charaf: Restrictions for OCL Constraint
Optimization Algorithms, OCL for (Meta-) Models in Multiple Application
Domains (OCLApps) Workshop, 2006

[7] VMTS Web Site, http://vmts.aut.bme.hu

[8] E. Börger, R. Stärk: Abstract State Machines: A Method for High-Level
System Design and Analysis, Springer-Verlag, 2003

[9] M. Richters: A Precise Approach to Validating UML Models and OCL
Constraints. PhD thesis, University at Bremen, Bremen, Germany, 2001

[10] S. Flake: Towards the Completion of the Formal Semantics of OCL 2.0
ACSC, pp. 73-82, 2004

[11] S. Flake, W. Müller: An ASM Definition of the Dynamic OCL 2.0
Semantics, UML 226-240, 2004

[12] R. F. Stärk, J. Schmid, E. Börger: Java and the Java Virtual Machine:
Definition, Verification, Validation, Springer Verlag, 2001

[13] G. Mezei, T. Levendovszky, H. Charaf: An Attribute Transformation
Technique For N-Layer Metamodeling, Microcad, 2007

[14] UML 2.0 Specification http://www.omg.org/uml/

[15] G. Mezei, T. Levendovszky, L. Lengyel, H. Charaf: Multilevel
Metamodeling - A Case Study, MicroCAD, March 10-11, 2005, Miskolc,
pp. 321-326

