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Abstract: Domain-specific modeling has growing importance in many fields of software 
enginering, such as modeling control flows of data processing, or in man-machine systems. 
Customizable language dictionary and customizable notations of the model elements 
offered by domain-specific technologies make software systems easier to create and 
maintain. However, visual model definitions have a tendency to be incomplete, or 
imprecise; the definitions can be extended by textual constraints attached to the model 
items. Textual constraints can eliminate the incompleteness stemming from the limitations 
of the structural definition as well. The Object Constraint Language (OCL) is one of the 
most popular constraint languages in the field of UML and Domain Specific Modeling 
Languages. OCL is a flexible, yet formal language with a mathematical background. 
Existing formalisms of OCL does not describe dynamic behavior of constraints. Our 
research aims at creating an OCL optimization solution and prove its correctness formally. 
However, the shortcomings of the existing formalism has led us to create a new formalism. 
The paper presents OCLASM, a new formalism for OCL, which can describe both the 
semantics and the dynamical behavior of the language constructs, thus, it is capable of 
describing proofs of optimization algortihms. OCLASM is  based on the Abstract State 
Machines technique. 

Keywords: OCL, optimization,  constraints, Abstract State Machines 

1 Introduction and Motivation 

Visual languages can accelerate the develepement and maintenance of software 
systems. Moreover, the ability to illustrate the structure of a system graphically 
means that even non-programmer users can understand the underlying logic. One 
family of visual languages are the Domain-Specific Modeling Languages 
(DSMLs), which allow creating visual models using a high level of abstraction, 
the customization of model rules and notation. The customization abilities of 
DSMLs makes easier to understand and handle the problems that made DSMLs 
very popular in almost all fields of software engineering including, but not limited 
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to general software modeling, feature modeling [1], resource editing [2] or control 
flow modeling. 

Besides the advantages of visual languages, they have weaknesses as well. Visual 
model definitions have the tendency to be imprecise, incomplete, and sometimes 
even inconsistent. For example, assume a domain describing the cooperation 
between computer networks and humans in a man-machine system. A computer 
can have input and output connections in the network, but these connections use 
the same cable with maximum n channels. Thus, the number of the maximum 
available output connections equals the total number of channels minus the current 
number of input channels. It is hard, or even impossible to express this relation in 
a visual way. The solution to the problem is to extend the visual definitions by 
textual constraints. There exist several textual constraint languages, the Object 
Constraint Language (OCL) is possible the most popular among them. OCL was 
originally developed to create precise UML diagrams [3] only, but the flexibility 
of the language made possible to reuse OCL in language engineering, such as in 
metamodeling [4]. Nowadays, OCL is one of the most wide-spread approaches in 
the field of metamodeling and model transformations. The textual constraint 
definitions of OCL are unambiguous and still easy to use. 

There exists several commerical and non-commerical domain-specific modeling 
tools, which have support for OCL either by interpreters, or by compilers. 
Interpreters are easier to implement, but they are not as flexible and efficient as 
compilers. The key of efficient constraint handling is to use optimizing OCL 
compilers. To our knowledge, currently none of the existing tools support 
optimization. 

Our research focuses on creating a complete, system-independent optimizing 
constraint compiler. We have created three optimizing algorithms (presented in [5] 
and in [6]) that can accelerate the validation process by relocating, decomposing 
the constraint expressions and by caching the model queries. We have 
implemented these algorithms in our tool Visual Modeling and Transformaion 
Tool [7]. Besides the pseudo code of the algorithms, preliminary proofs of 
correctness were also presented in the mentioned papers. However, when 
implementing the algorithms, we have found that formal proofs are required to 
ensure the correctnes of the compiler. 

OCL has a mathematical definition based on set theory with a notion of object 
model and system states. Although this formalism defines the syntax and 
semantics of OCL constraints, it does not cover dynamic behavior of the 
constraints. This paper presents OCLASM, a new formalism of OCL based on 
Abstract State Machines [8]. Our aim is to use this formalism to describe the OCL 
language and to prove the correctness of our optimization algorithms. The paper 
contains the formalism of one of the optimization algorithms, the 
RelocateConstraint algorithm to show how the formalism can be used in practice. 



Acta Polytechnica Hungarica Vol. 4, No. 1, 2007 

 – 91 – 

The paper is organized as follows: Section 2 explains why we have decided to 
create a new formalism for OCL instead of extending the existing. The section 
elaborates the most important projects in the field of OCL formalism and Abstract 
State Machines as well. Section 3 presents the basics of Abstract State Machines. 
Section 4 introduces the new formalism technique including the construction of 
the formalism and several basic examples. Section 5 shows how OCLASM can be 
used in case of Relocateonstraint algorithm. Finally, we summarize the presented 
work in section Conclusions. 

2 Related Work 

2.1 Set Theory and ASMs 

The first question to answer is why we have decided to create a new formalism for 
OCL instead of using the existing one. Existing formalism does not define the 
dynamic behavior of constraints, however set theory is a highly flexible formalism 
technique, thus the formalism could be extended to support dynamic behavior. To 
show the differences between such an extension and OCLASM, we have to 
introduce the properties of ASMs. 

Abstract State Machines (ASMs) are formerly known as evolving algebras. ASM 
is working on abstract data structures, which are provided with a simple 
mathematical foundation. The notation of ASM is based on the mathematically 
precise notion of a virtual machine execution, states and state transitions. This 
notation is familiar from programming practice. ASM provides a concise way to 
define system semantics and dynamic behavior. ASMs are very popular in the 
domain of formal specification. 

The ASM formalism has several advantages in contrast with the extension of the 
original formalism in this field. Firstly, the notation of ASM is easier to use for 
proving the correctness of algorithms given by pseudo code. Secondly, 
modularization and stepwise refinement is easier to accomplish in ASM. This also 
means that the formalism specification of the dynamic behavior can be 
hierarchically decomposed. Set theory is a flexible technique, but it uses a low-
level description of the problem space, thus, the description the dynamic behavior 
would produce a considerably huge rule set. In case of ASM this problem does not 
occur, because ASM allows to choose the level of abstraction used in the 
formalism. Therefore, the formalism in ASM can be more concise for our 
purposes with respect to OCL optimization. 
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2.2 OCL and ASM 

Abstract State Machines were used in many projects as a mathematical formalism. 
This section introduces only a few of these projects, more precisely, the projects in 
connection with OCL or modeling, and projects from where our method has 
borrowed some basic ideas. Some of the mathematical model formalisms not 
based on ASM are also presented. 

The book [9] presents a precise approach, which facilitates the analysis and 
validation of UML models and OCL constraints. It defines a formal syntax and 
semantics of OCL types, operations, expressions, invariants, and pre-
postconditions, and it discusses some of the main problems with the original OCL 
specification. Although the book does not use ASM for formalism, it gives a 
precise overview about the topic. 

The OCL formalism available in set theory is examined in [10]. The paper collects 
the elements appearing in OCL standard, but not in the formalism. It presents an 
extension of the original formalism to solve these problems. 

In [11], an ASM definition for dynamic OCL semantics is presented. This 
formalism focuses on the states of the modeling environment and handles the 
invariants as atomic units implemented in outer functions. This means that the 
formalism handles the effects and the result of the validation, but it does not give 
ASM definition for the OCL statements, such as forall, thus, it is not capable 
of describing algorithms operating with statements. 

ASM definition for Java and Java Virtual Machine (JVM) is elaborated in [12]. 
This ASM formalism offers an implementation-independent description of the 
language and the execution environment. Using this abstract description, several 
properties of Java and JVM have been proved. The book contains several 
straightforward solutions. Our approach has borrowed the basic idea of 
formalization, namely handling the code as an annotated syntax tree from here. 

3 Backgrounds 

3.1 ASM Basics 

In [8], ASMs are introduced as follows. ASMs are finite sets of transition rules of 
the form 

if (condition) then Updates 
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which transform abstract states. Where Condition (referred to as guard) under 
which a rule is applied is an arbitrary predicate logic formula without free 
variables. The formula of Condition evaluates to true or false. Updates denotes an 
infinite set of assignments in the form of f(t1..tn) := t whose execution is 
understood as changing (or defining, if it has been not defined before) the value of 
the occurring function f at the given arguments. 

The notion of ASM states is the classical notion of mathematical structures where 
data is provided as abstract objects, i.e., as elements of sets (domains, universes, 
one for each category of data) which are equipped with basic operations (partial 
functions) and predicates (attributes or relations). The notion of ASM run is the 
classical notion of computation in transition systems. An ASM computation step 
in a given state consists of executing simultaneously all updates of all transition 
rules whose guard is true in the state if these updates are consistent. A set of 
updates is called consistent if it contains no pair of updates with the same location. 

Simultaneous execution provides of an ASM rule R for each x satisfying a given 
condition ϕ: 

forall x with ϕ R, 

where ϕ is a Boolean-valued expression and R is a rule. We freely use 
abbreviations, such as where, let, if then else, case and similar standard notations 
which are easily reducible to the above basic definitions. 

A priori no restriction is imposed either on the abstraction level or on the 
complexity or on the means of the function definitions used to compute the 
arguments and the new value denoted by ti, t in function updates. The major 
distinction made in this connection for a given ASM M is that between static 
functions which never change during any run of M and dynamic ones which 
typically do change as a consequence of updates by M or by the environment. The 
dynamic functions are further divided into four subclasses. Controlled functions 
are dynamic functions which can directly be updated by and only by the rules of 
M. Monitored functions are dynamic functions which can directly be updated by 
the environment only. Interaction or shared functions are dynamic functions 
which can directly updated by rules of M and by the environment. Derived 
functions are dynamic functions which cannot be directly updated either by M or 
by the environment, but are nevertheless dynamic, because they are defined in 
terms of static and dynamic functions. 

3.2 The Mathematical Definition of ASM 

In an ASM state, data is available as abstract elements of domains which are 
equipped with basic operations represented by functions. Relations are treated as 
Boolean-valued functions and view domains as characteristic functions, defined 
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over the superuniverse which represents the union of all domains. Thus, the states 
of ASMs are algebraic structures, also called algebras. 

Definition 1  A vocabulary (also called signature) Σ  is a finite collection of 
function names. Each function name has an arity, which is a non-negative integer 
representing the number of arguments the function takes. Function names can be 
static or dynamic. Nullary function names are often called constants; but the 
interpretation of dynamic nullary functions can change from one state to the next. 
Every ASM vocabulary is assumed to contain the static constants undef, True and 
False. 

Definition 2  A state  of the vocabulary Σ  is a non-empty set X, together with 
the interpretation of the function names of Σ, where X means the superuniverse of 

. If f is an n-ary function name of Σ, then its interpretation  
f      is a function from Xn  into X; if c is a constant of Σ, then its interpretation  
c     is an element of X. The superuniverse X of the state  is denoted by | |. 

The elements of the state are the elements of the superuniverse of the state and, 
according to the definition, the parameters of the functions are also elements of 
the superuniverse. The new elements come from reserve, which is a set whose role 
is to provide new elements whenever needed. 

Definition 3  An abstract state machine M consists of a vocabulary Σ, an initial 
state  for Σ, a rule definition for each rule name, and a distinguished rule name 
called the main rule name of the machine. 

4 ASM for OCL 

4.1 Overview 

OCLASM has been created to formalize the evaluation of constraints, OCLASM 
acts as an interpreter for OCL constraints. The same functions and the same rule 
set are used regardless of the constraint or the underlying model. This property of 
OCLASM is essential, since the OCLASM has been created as a generic 
formalism for OCL. 

States of OCLASM represent the state of execution at a certain point of time. A 
state can be considered as an internal state of the evaluating environment, which is 
evolved by the rule set of OCLASM. States describe for example which 
expression is under evaluation or which local variables are available. The rules of 
OCLASM are used to navigate between the states when running the validation. 
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It is important that the states do not contain any particular information about the 
underlying model (the model to validate), since (i) OCL cannot change the 
underlying model by the definition of OCL [3], and (ii) the validation must be 
platform independent. Similarly, states do not describe the constraints directly, but 
the expressions of the constraints are obtained by a monitored function. 

The presented approach is similar to the method published in [12] in several 
aspects, where the constraint expression is handled as the sequence of 
programming statements and expressions. The execution of the constraint is a 
step-by-step execution of these programming units. At each position, the 
corresponding expression or statement is evaluated or executed, and then the 
evaluation proceeds to the next programming unit. The method is also similar to 
traversing the annotated abstract syntax tree of the constraint. 

4.2 Monitored and Shared Functions 

Obtaining the model items and the phrases of constraint expressions is handled by 
monitored functions. This solution ensures that the modeling environment and the 
evaluation environment are independent from the dynamic behavior of the 
constraint formalized by the OCLASM. 

The underlying model extends the original model structure definition used in 
OCL: it consists of model nodes, attributes and relationships (not restricted to 
UML types). Attributes are either of primitive types or of complex attributes 
containing several sub-attributes. Model nodes can contain attributes (both 
primitive and complex attributes). The attribute and modeling structure described 
in [13] is used, which can extend the UML-based modeling structure to an n-level 
metamodeling hierarchy. This generic structure allows extending OCL to domain-
specific languages as well [4]. The extension of the underlying modeling structure 
means that OCLASM can be used not only to describe the dynamics of constraint 
evaluation, but to formalize constraints for domain-specific models as well. 

Both model nodes and attributes are identified by a unique ID (a literal 
expression), the universe of IDs is shared between the two different constructs. 
This uniformity helps reducing the number of monitored functions (for example, 
node-node and node-attribute navigations can be handled uniformly). To 
differentiate attributes and normal model nodes, there is a IsModelNode(ID) 
function defined. 

To simplify handling of attributes the function AttrValue(ID) is used. The function 
returns undef for complex attributes, but returns a primitive value for primitive 
attributes. Primitive value in this context means that the type of the value is 
Boolean, number or string. 

To express the meta level- instance level relationship the Meta(ID) function is 
used, which returns the meta item of the instance level item identified by ID. This 
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function is essential to capture different instantiation techniques (for example the 
instantiation of UML [14] and VMTS [15]). 

Navigation between model items is handled by two functions. The function To(ID, 
Dest) works on the model level, the ID identifies the source model item, while 
Dest selects target items. The function returns all nodes or attributes which can be 
reached from the model item using a relation where the destination name is Dest. 
The result of the function is a list of possible destinations. Note that the list 
contains either model item IDs, or attribute IDs, but not both of them, because 
OCL does not allow this kind of polymorphism (attribute queries and navigations 
could not be distinguished). 

The Mul(ID, Dest) (‘Mul’ stands for Multiplicity) function is another function to 
handle relations between model items. It works on the metamodel level, thus, the 
model definition is checked instead of the concrete models. The function Mul 
checks the minimum and the maximum multiplicity of the given relation 
according to the metamodel. It returns four integers as a list, the 
minimum/maximum multiplicity of the source/destination side. 

OCLASM uses a shared function GetPhrase(Position) as well. Phrases are basic 
syntactic constructs (programming statements and expressions) available in OCL. 
A Phrase has a string attribute PhraseType (e.g. ‘NavigationCall’). Phrases can 
contain other Phrases as children. For example, an iteration Phrase can have an 
iterator variable declaration Phrase, an iteration condition Phrase and an iteration 
core block Phrase. The function GetPhrase returns a Phrase of the constraint 
identified by the parameter Position. Position is a value from the universe of all 
possible positions of Phrases of the constraints (the universe is referred to as Pos). 
If the constraint is handled as a syntax tree then Phrases are the nodes of this tree 
and the universe of Pos contains the pointers to the nodes. Note that the function 
is marked as shared, which means that it can be updated by the environment, or by 
the rules of OCLASM. This duality is required, because in general, constraints are 
defined outside the scope of OCLASM, but certain algorithms can modify the 
original constraints. For example an optimization algorithm can restructure the 
expressions of constraints in order to improve the performance. 

Child(Position, I) is another shared function. It obtains the Ith children Phrase of a 
complex Phrase (a Phrase which has children). The first parameter of the function 
is the (valid) position of the complex Phrase. If the Phrase does not have a child 
at the selected index, then the function returns undef. The function 
Parent(Position) implements the reverse direction: it obtains the position of a 
Phrase and returns the position of the container Phrase. These functions are 
shared functions for the same reason as GetPhrase. Note that Child and Parent 
functions are always synchronized automatically by the framework. 
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4.3 Dynamic Functions 

Constructs of OCL, for example iterate or navigate, are mainly defined as rules in 
OCLASM. Dynamic functions help to store the current state of the evaluation 
environment when the rules are applied. For example, navigate operation selects a 
new model item, which is used as the origin of all further operations. Dynamic 
functions are just like helper variables in the environment framework. 

To obtain the current position of evaluation, the position of the Phrase currently 
under execution, the function CurrentPos() is used. The return value of the 
function is a position from the universe Pos. 

The dynamic function Type(Pos) is used to handle the type of the different (OCL) 
expressions uniformly. Its parameter is the position of the target expression. The 
return value of the function can be one of the basic types defined in OCL, such as 
real, integer, or tuple. 

The value of the expressions are handled similarly to the type function: the unary 
function Value(Pos) retrieves the position of the expression and returns its value. 
Using the notation of common programming languages, such as C, the difference 
between GetPhrase(pos) and Value(pos) is the following: GetPhrase(pos) is 
similar to a pointer. In contrast, Value(pos) is the value in the pointed memory 
block. 

OCL allows the user defining local variables. In OCLASM, these variables are 
handled by the function Local(Name). The function has one input parameter: the 
name of the variable. The function Local returns the position of a variable 
declaration expression. When defining a new local variable, then a new position is 
created using the reserve. Variable declarations contain the name, type and value 
of the variable. If a local variable is requested by its name and there is no local 
variable defined with the given name, then the function returns undef. The name 
of the local variables are handled by the unary function Name, which has one 
input parameter, the position of the variable expression. Name returns the name of 
the local variable as a string, or undefined if the position is not a valid variable 
definition. 

OCLASM handles all four types of collections (Set, OrderedSet, Bag and 
Sequence) by arrays indexed by integer numbers. Indexing is denoted by brackets. 
The items in the arrays are the items in the collections, for example, 
Value(Position)[3] means the third item in the collection: expression at the 
position Position. The arrays can be traversed by the forall expression of ASM, 
obtaining every element. According to the default notation of ASM [8] the length 
of collection is denoted as l(Value(Position)), where Position is the position of the 
expression. 

Tuple types are also handled as arrays indexed by integer values, the definition of 
tuple items are stored in lists with two elements (name – value pairs), these lists 
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are list items of the array representing the tuple. For example, the expression 
Tuple(x: Integer = 5, y: String = 'Ok') results an array with two items: 
TupleArray[1] = [‘x’, Integer = 5], while TupleArray[2] = [‘y’, String 
= 'Ok']. When a tuple item is queried by its name, then OCLASM tries to find 
an item in the associated array with the name and updates the Type – Value 
functions. In the previous example if the tuple item with name ‘y’ is requested, 
then OCLASM checks TupleArray[1], but its name (‘x’) does not match, thus, it 
advances to TupleArray[2]. Since the name is found, OCLASM sets the Type of 
the current position to ‘String’ and the Value to ‘Ok’. 

4.4 Vocabulary and Universes 

Using the previously defined functions, the syntax of OCLASM can be defined: 

Definition 4  The vocabulary ΣOCLASM of the OCLASM formalism is assumed to 
contain the following characteristic functions (arities are denoted by dashes): 

• Monitored functions:  IsModelItem/1, AttrValue/1, Meta/1, To/2, Mul/2 

• Shared functions: GetPhrase/1, Child/2, Parent/1 

• Dynamic functions: CurrentPos/0, Type/1, Value/1, Name/1, Local/1 

Definition 5  The superuniverse  | | of a state  of  ΣOCLASM is the union of six 
universes: 

• The universe of Phrases (basic syntactic constructs of OCL) 

• The universe of possible positions of Phrases in the constraints 

• The universe Boolean (true/false/undef) 

• The universe of finite lists of numbers 

• The universe of finite lists of finite strings 

• The universe of finite lists of possible identifiers (IDs) for model items 
and attributes 

4.5 Transition Rules 

Transition rules describe how the states of OCLASM change over time by 
evaluating expressions and executing statements of the input program. The main 
idea is to create a rule for each type of language constructs available in OCL. For 
example OCLASM has rules for iterate, navigation, or variable declaration 
actions. These rules describe the semantics of the expression and manage dynamic 
functions. 
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OCLASM a central rule called eval. The rule eval is a rather complex rule, it has a 
switch-case block with many branches, more precisely for each type of language 
constructs, eval has a branch (see sketch of the rule below). It checks the type of 
the parameter Phrase and executes the appropriate branch by calling the rule 
associated with the PhraseType. Therefore, eval acts as a mapping function 
between Phrases and rules of OCLASM. Moreover, eval helps calling the rules 
with the appropriate parameters (it adds sub-expressions as parameters, using the 
Child function). Updating the value of CurrentPos is also handled by eval.  
 
1. rule eval(Phrase) 
2. { 
3. CurrentPos():=Phrase; 
4. switch(PhraseType(Phrase)) 
5. { 
6. case ‘VariableDeclaration’:  
7. VariableDeclaration(Child(Phrase,1), Child(Phrase,2),  
8.  Child(Phrase,3)); 
9. case ‘NavigationCall’:  
10. Navigate(Child(Phrase,1), Child(Phrase,2); 
11. … 
12. }  
13. } 

The initial position of OCLASM sets the CurrentPos to the start position of the 
outermost constraint expression and sets the value of all other dynamic functions 
to undef for all possible parameters. A run of OCLASM is started by calling eval 
for the start position. When the run of the state machine of OCLASM is finished 
then the outermost expression holds a single value. If the evaluated constraint was 
an invariant, then this value shows whether the model was valid. 

4.6 Invariants 

OCLASM, as presented until this point is useful to simulate the execution of a 
simple or complex OCL expression, but not a whole constraint, such as an 
invariant. This definition is the core of OCLASM, but the presented approach can 
be extended in order to support OCL invariants or pre and post conditions. The 
current description shows how invariants can be formalized. 
 
1. rule CheckModelInvariants(Invariants) 
2. { 
3. forall(Invariant in Invariant) 
4. { 
5. forall (ID in {∀ID: ModelItem(ID)= true}) 
6. { 
7. if (Invariant.Context) = Meta(ID)) 
8. { 
9. CurrentPos():=Invariant.StartPosition; 
10. Local():=undef; 
11. if (not eval(CurrentPos()) 
12. {  
13. print “The model is not valid.”; 
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14. exit; 
15. } 
16. } 
17. } 
18. } 
19. } 

To have this rule as part of OCLASM, the universe of Invariants must be added to 
the superuniverse in Defintion 5. Invariants have a Context property and a pointer 
to the outermost expression in the invariant. The extended OCLASM presented in 
this section is referred to as OCLASMInv to differentiate from the original 
OCLASM definition. Pre and post conditions can be handled similarly resulting a 
family of OCLASM formalisms. 

4.7 Examples 

Although the OCLASM formalism presented in this paper is capable of describing 
all OCL operations, we present only a few rules showing the method in practice. 
Other operations can be formalized similarly. 

Firstly, a very simple rule, the VariableDeclaration is shown. The function eval 
obtains the position of the children expressions (variable name, type and init 
value) and executes them before this rule is executed. 
 
1. rule VariableDeclaration(VarName, VarType, VarInit) 
2. { 
3. Name(CurrentPos)  = Value(VarName) 
4. Type(CurrentPos)  = eval(VarType) 
5. if (VarInit!= undef) 
6. Value(CurrentPos) = eval(VarInit) 
7. else 
8. Value(CurrentPos) = undef 
9. endif 
10. } 

Secondly, the rule for iterate operations is presented. It is essential to formalize 
this operation, because every other collection operation can be accomplished by 
using iterate [1]. For example, the collection operation count() can be simulated 
by an iterate expression 

iterate(i : Integer, r Integer = 0 | r+1). 

The node iterate has exactly four children in the abstract syntax tree: (i) the 
collection where the operation is applied; (ii) the declaration of the iterate 
variable, (iii) the declaration of the result variable, and (iv) the iteration body. 
 
1. rule iterate(CollectionDef, IteratorDecl, ResultDecl, Iteration) 
2. { 
3. eval(CollectionDef); 
4. eval(IteratorDecl); 
5. eval(ResultDecl); 
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6. Local(Name(ResultDecl)):= new(Pos); 
7. Value(Local(Name(ResultDecl))):= Value(ResultDecl); 
8. Type(Local(Name(ResultDecl))):= Type(ResultDecl); 

 
9. forall collectionElement in Value(CollectionDef) 
10. Local(Name(IteratorDecl)):= new(Pos); 
11. Value(Local(Name(IteratorDecl)))= collectionElement 
12. Type(Local(Name(IteratorDecl))) = Type(IteratorDecl) 
13. eval(Iteration); 
14. endfor 

 
15. Local(Name(IteratorDecl))= undef; 
16. Value(CurrentPos) = Value(Local(Name(ResultDecl))); 
17. Type(CurrentPos)  = Type(Local(Name(ResultDecl))); 

 
18. Local(Name(ResultDecl))= undef; 
19. } 

The third example shows the rule constructed for navigation expressions. Here the 
model-based, external functions are also used. The rule evaluates the origin, 
namely, it obtains the model item which is the starting point of the navigation. As 
next, the rule checks the multiplicity of the rule, if it allows exactly one 
connection, then the result is a ModelItem, in any other case the result is a 
collection of ModelItems. Since the function To always returns a list (with the IDs 
of the destination nodes), in the first case the first element of the result array is 
used (To(Value(Origin), DestName)[0]). In this case the type of the result 
is the ID of the meta node of the destinations node. If the multiplicity is not 1, then 
a new collection is created and returned. 
 
1. rule Navigate(Origin, DestName) 
2. { 
3. eval(Origin); 
4. if ( Mul(Value(Origin),DestName)[2]==1 and  
5. Mul(Value(Origin),DestName)[3]==1 and 
6. IsModelNode(To(Value(Origin),DestName)[0])) 
7. { 
8. Value(CurrentPos)= To(Value(Origin),DestName)[0] 
9. Type(CurrentPos) = ‘ModelItem’ 
10. }  
11. else 
12. { 
13. Type(CurrentPos) = ‘Set’ 
14. Value(CurrentPos) = Set() 
15. forall ModelId in To(Value(Origin),DestName) 
16. Append ModelId in Value(CurrentPos) 
17. endfor 
18. } 
19. } 
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5 Application of the Formalism 

5.1 The Relocation Algorithm 

This section introduces how OCLASM can be used to prove the correctness of a 
dynamic algorithm working on OCL constraints. The RelocateConstraint 
algorithm is an optimization algorithm for OCL, it has been presented in [5] and in 
[6]. The main idea behind the algorithm is to reduce the time-consuming model 
queries, if it is possible. Therefore, the algorithm tries to relocate OCL invariants 
defined by the user to another context, where the evaluation requires the least 
model queries. Using OCLASM, it is possible to give a formal proof of 
correctness for the algorithm. 

The algorithm applies the relocation always between adjacent nodes. In other 
words, the original and the new context of the constraint are always connected in 
the metamodel. This limitation does not restrict the optimization capabilities of the 
algorithm (as shown in [6]). Note that this does not mean that the nodes of the 
original context and the new context are connected on the instance level as well. 
This is because checking invariants is based on meta level (see algorithm X in 
section Y) and metamodels can allow zero multiplicity between the elements. Our 
research has shown [6] that the correctness of relocation is heavily affected by the 
multiplicities on the source and on the destination side. 

The algorithm is defined as a rule, which runs before eval is called with the 
outermost position of the invariant. The algorithm modifies the constraints by 
updating the GetPhrase and Child functions. To simplify the rule it is worth 
defining formulas and helper rules: 
 
ϕA.Dest(Phrase, IDA, Dest)  =  Value(eval(Child(Phrase,0))) = IDA and  

      Value(Child(Phrase,1)) = Dest 
 
ϕA.x (Phrase, IDA, Dest)  =   Value(eval(Child(Phrase,0))) = IDA and  

      Value(Child(Phrase,1)) <> Dest 

If the original context is A and the new context is B then ϕA.Dest expresses that the 
Phrase is a navigation from A to B, while ϕA.X  expresses that the Phrase is a 
navigation from A to anywhere, but not to B. The formulas use the information 
that the first (0th) child of navigations (to model nodes and attributes) is the origin, 
while the second (1st) child is the name of the destination. 
 
ForallCheck():= ∃ModelPhrase: GetPhrase(ModelPhrase)<> undef and 

(ϕA.x(ModelPhrase,0,D) or (ϕA.Dest(ModelPhrase,0,D) 
and Parent(ModelPhrase).PhraseType<>’ForAll’)  )))  

This derived helper function returns true, if (i) there is navigation/attribute call 
from A to x (x<>B), or (ii) there is a navigation from A to B and the outermost 
phrase in the constraint has a specific type (‘ForAll’). 
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GetSrc(ID, Dest) :=   {             Src: if ∃ID2: ID2 ∈ To(ID,Dest) and  
                   ID ∈ To(ID2, Src) 
     undef, otherwise 

This derived helper function obtains the name of the source side of navigations. 
For example there is a navigation between A and B, we can navigate from A to B 
using the destination name “B”. This function obtains the reverse direction, 
namely to source name, which is used in navigation from B to A. 
 
Top(Phrase)  := Phrase, if Parent(Phrase)=undef 
      PhraseTOP, if ∃PhraseTOP :  

PhraseTOP= Top(Parent(Phrase)) 

This derived function tries to find the outermost Phrase of the constraint by using 
a recursive method. 
 
1. rule AddChild (Type,Parent,Idx)  
2. { 
3. Child(Parent, Idx):= new(Pos); 
4. GetPhrase(Child(Parent, Idx)):= new (Phrase); 
5. GetPhrase(Child(Parent, Idx)).PhraseType:= Type; 
6. } 
 
1. rule AddBackNavigation(Phrase, WithForallCheck) 
2. { 
3. if (WithForallCheck and (ForallCheck() and Mul(O,D)[1]>1)) 
4. { 
5. AddChild(‘VariableCall’,Phrase,0); 
6. AddChild(‘OrigSelf’, Child(Phrase,0), 0); 
7. } 
8. else 
9. { 
10. AddChild (‘NavigationCall’, Phrase,0); 
11. AddChild (‘SelfReference’,Child(Phrase,0),0); 
12. AddChild ( GetSrc(O,D),Child(Phrase,0),1); 
13. } 
14. } 

These helper rules are used to automate the repeatable parts of the main relocation 
rule. The first rule creates a new Phrase with the given type and adds it as a child 
of the parameter Phrase. This rule is used when the algorithm inserts new 
expressions into the constraint. The rule AddBackNavigation inserts a complete set 
of Phrases as a child of the parameter Phrase. The rule has two different modes 
according to the second parameter, the result of ForallCheck function and the 
multiplicity on the source side. The first mode creates phrases that call a variable 
with the name ‘OrigSelf’, while the second mode inserts phrases implementing a 
navigation call from the new context to the original context. The reason while the 
modes are differentiated is explained later. 
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1. rule RelocateConstraint(O, D) 
 
2. if (Mul(O,D)[2]=0) 
3. { 
4. exit (“Relocation error.”) 
5. } 

 
6. if (Mul(O,D)[0]=0) 
7. { 
8. AddChild (‘IfExpr’, undef ,0); 
9. AddChild (‘IsEmpty’, Child(undef,0) ,0); 
10. AddBackNavigation(Child(Child(undef,0), 0), false); 
11. Child(Child(undef,0), 1):= Top(ModelPhrase); 
12. Child(Child(undef,0), 2):= True;   
13. } 

 
14. if (Mul(O,D)[1]>1 and ForAllCheck()) 
15. { 
16.   AddChild (‘ForAll’, undef ,0); 
17.   AddBackNavigation(Child(undef,0), false); 
18.   AddChild (‘IteratorVariable’, undef ,1); 
19.   Value(Child(undef,1)):=’OrigSelf’; 
20.   Child(Child(undef,0), 2):= Top(ModelPhrase); 
21. } 
 
22. forall (ModelPhrase in {∀Phrase: GetPhrase(Phrase)<> undef and 

(Phrase.PhraseType=’AttributeCall’ or 
Phrase.PhraseType = ‘NavigationCall’)}) 

23. { 
24. if (ϕA.Dest(ModelPhrase,0,D)) 
25. { 
26. if (Mul(O,D)[3]>1)  
27. { 
28. if (Parent(ModelPhrase).PhraseType=’ForAll’) 
29. { 
30. GetPhrase(Parent(ModelPhrase)):=  
31. GetPhrase(Child(Parent(ModelPhrase),2));  
32. } 
33. else 
34. AddBackNavigation(ModelPhrase, true); 
35. } 
36. else 
37. ModelPhrase:= Child(ModelPhrase, 0);   
38. } 
39. else 
40. AddBackNavigation(ModelPhrase, true); 
41. } 
42. endrule 

The rule is relatively complex; different cases are summarized in Table 1. The 
table shows the different cases based on the multiplicities on the source side (rows 
of the table) and on the destination side (columns of the table). The table 
summarizes the special constructs used in different cases, each cell has the 
corresponding line numbers for the constructs in the rule. The basic relocation 
case can be found at line 37 and 40 in the rule. Recall that the explanation why we 
distinguish these cases can be found in [6]. 
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 <1 1 >1 

<1 Not allowed
(#2-5) 

Add Filter
(#6-13) 

Add Filter, ForAll check
(#6-13; #28-34) 

1 Not allowed
(#2-5) 

No spec. 
 

ForAll check 
(#28-34) 

>1 Not allowed
(#2-5) 

Add ForAll
(#14-21) 

Add ForAll, ForAll check
(#14-21; #28-34) 

Table 1 
Relocation overview 

5.2 Proof of Correctness 

The algorithm applied by the RelocateConstraint rule is correct, if none of the 
constructs (modification of the constraint) modifies the result of validation, i.e. if 
the set of valid models remains the same. Therefore, the presented proof shows 
that the steps of the rule are correct by mapping expressions of the original 
constraint to expressions in the new constraint and show that they are equivalent. 
The proof uses the CheckModel rule from section 4.6. For sake of simplicity, the 
condition expression at line #11 in the algorithm is referred to as 
‘ValidModelCheck’. We refer to sections of the rules as Rule(#From-To), for 
example RelocateConstraint(#2-5). Note that the aim of the proving method is to 
show the equivalency of the original and the relocated constraint, therefore, it is 
not stressed whether the rule RelocateConstraint is optimal. 

To distinguish the original and the relocated constraints we use the labels ‘old’ 
and ‘new’, for example Cold (that is the original constraint), or selfold (self reference 
of the original constraint) Furthermore, for sake of simplicity we suppose that the 
original context type was A, while the new context type is B. The instantiations of 
type A are a1, a2 … an  (collected in a set InstA), the instantiation of type B are b1, 
b2… bn (collected in the set InstB). B can be reached from A using the name Dest 
(To(ai,Dest)=bj) while the reverse direction uses Src (To(bi,Dest)=aj). 
If  the model allows zero multiplicity, then one of the following formulas are true: 
 
ϕZeroOnSrc: Mul(A,Dest)[0] = 0 
ϕZeroOnDest: Mul(A,Dest)[2] = 0 

We prove that the algorithm is always correct in these cases, then we formalize 
other possible cases as follows: 
 
ϕExactlyOne: Mul(A,Dest)[1]=1 ∧ Mul(A,Dest)[3]=1 
ϕManyOnSrc: Mul(A,Dest)[1]>1 ∧ Mul(A,Dest)[3]=1 
ϕManyOnDest: Mul(A,Dest)[1]=1 ∧ Mul(A,Dest)[3]>1 
ϕManyBoth: Mul(A,Dest)[1]>1 ∧ Mul(A,Dest)[3]>1 
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If the constraint does not contain any model query, then the constraints results in a 
simple Boolean value true, or false. The result does not depend on the underlying 
model, thus it is always true, or false. 

If this constant result is true, then it means that all possible models are valid. This 
means that ValidModelCondition is always satisfied, thus, the inner forall 
expression at CheckModel(#5-17) can be replaced by a constant true value. 
Therefore Cnew always evaluates to true as well. 

If this constant result of the constraint is false (no model is valid, which contains a 
model item of the selected type), then ValidModelConditionOld is not satisfied for 
instances of A, while ValidModelConditionNew is not satisfied for instances of B. 
Therefore, the relocation of the constraint is not correct if InstA, or InstB is empty. 

InstB can be empty only if formula ϕZeroOnDest holds (zero multiplicity is allowed 
on the destination side). This case is handled at RelocateConstraint(#2-5): the 
condition checks whether for each ai there exists at least one bi, more generally 
that there is a bi in the model, which can be used as a host for the constraint (host 
nodes of a constraint are nodes, in which the constraint is defined). If not, then the 
rule throws an error message. 

Similarly, InstA can be empty if formula ϕZeroOnSrc holds. The problem is solved by 
the condition at RelocateConstraint(#6-13), which ensures that the constraint is 
evaluated only to those bjs which are connected to at least one ai (otherwise it 
returns with a constant true). Thus, if InstA is empty, then the constraint is not 
evaluated. 

As result of the conditions at RelocateConstraint(#2-13), the following formulas 
always hold: 
 
ϕAToB:  ∀i: Meta(i)=A → ( ∃j,  ∃Dest: Meta(j)=B ∧ j∈To(i, Dest) ) 

ϕBToA:  ∀i: Meta(i)=B → ( ∃j,  ∃Src:  Meta(j)=A ∧ j∈To(i, Src) ) 

Note that these formulas ensure also that the relocation of constraints without 
model queries is always correct. 

If the constraint contains model queries, then the result of eval at 
CheckModel(#11) can be affected by the navigations and attributes of ai. The 
relocation is correct if the result of model queries in the original context is the 
same as the result in the new context. Different cases are indexed by the formulas 
defined above: 

ϕExactlyOne: RelocateConstraint(#37) and RelocateConstraint(#40) are used. 
RelocateConstraint replaces navigations from A to B with a self reference. Instead 
of selfOld.Dest the new constraint has a selfNew expression 
(RelocateConstraint(#40)). According to the rules of OCLASM, the value of 
selfOld.Dest is retrieved by the monitored function call To(ai,”Dest”), which results 
bj, an instance of B. Since formula ϕAtoB holds, thus this bj always exists, therefore 
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the expression To(ai,”Dest”) can be replaced by the value bj for this certain 
navigation expression for this certain ai. However, the constraint is cheked against 
all ais (CheckModel(#7)), thus To(ai,”Dest”) is always replacable by an 
appropriate bj. In the relocated constraint this replacement is done by using the 
new self reference. Note that relocation does not create false host nodes (nodes 
which could not affect the resul of the original constraint, but could affect the 
result of the relocated version) for the constraint (due to ϕBtoA.). 

RelocateConstraint inserts a navigation expression from B to A 
(RelocateConstraint(#37)) before any navigations/attribute queries from A to 
anywhere, but not B. The expression selfOld.x (where x is not “Dest”) is replaced 
by selfNew.Src.x. Proving is similar to the previous case, but on the reverse 
direction. Since the formula ϕBtoA holds, thus selfNew.Src which results in a To(bi, 
“Src”) can be replaced by the value aj for this certain navigation/attribute 
expression for this certain bi. Moreover, the new constraint is cheked against all 
occurences of bi (CheckModel(#7)), thus To(bi,”Src”) is always replacable by an 
appropriate aj. Therefore, the value of selfOld always equals with the value of 
selfNew.Src. Note that relocation does not delete host nodes because of ϕAtoB. 

ϕManyOnDest: The section RelocateConstraint(#28-34) and RelocateConstraint(#40) 
are applied. Correctness of navigations of the form selfOld.x, where x <> “Dest” is 
ensured by RelocateConstraint(#40) according to constructs used in ϕExactlyOne. 
However, the result of navigations from A to B results in a set of bis. The 
condition at RuleConstraint(#28) checks whether the result of the navigation 
expression is used in a forall construct, if so, then the original expression is 
replaced by the inner expression of forall. Thus, selfOld.Dest → forall(ExpOld) is 
transformed into ExpNew. In OCL, forall(Exp) is a set operation, which is true only 
if Exp is satisfied for each item in the set. Therefore, the original expression 
selfOld.Dest → forall(Exp) is true for a certain ai, if Exp is true for each bj∈ To(ai, 
Dest). This means that the original expression in a certain ai can be replaced by 
ExpNew in bj∈To(ai, Dest). The original constraint is evaluated for each ai, thus the 
replacement is correct in each bj connected to one of the ais. Moreover, since 
ϕBToA holds, thus, bjs are always connected to an ai. This means that the relocation 
is always correct in this case. 

If the condition at RelocateConstraint(#28) is not satisfied, then replacement 
inserts a navigation back to the original constraint and the expression is evaluated 
there. The expression selfOld.Dest is replaced by selfNew.Src.Dest. Because of ϕBToA 
this replacement is always correct as shown constructs used in ϕExactlyOne. 

ϕManyOnSrc: The section RelocateConstraint(#14-21) and RelocateConstraint(#38) 
are applied. Correctness of navigations of the form selfOld.Dest is granted by 
RelocateConstraint(#38) according to constructs used in ϕExactlyOne. However, 
navigations from B to A results in a set of ais. The condition at 
RelocateConstraint(#14) checks whether such navigation is required (using the 
rule ForAllCheck). Backward navigation to the original constraint is required in 
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the case of selfOld.x expressions (where x <> “Dest”), or if Mul(A,Dest)[1]>1 
according to constructs used in ϕManyOnDest. Here only the first case is possible, 
which is handled by adding a forall expression to the constraint during relocation 
(RelocateConstraint(#15-21)). The new forall expression encapsulates the whole 
constraint and it simulates the backward navigation using the iteration variable 
‘OrigSelf’, where navigation expressions are replaced by variable calls in 
AddBackNavigation(#5-6). Therefore, the constraint … selfOld.x … is 
transformed into selfNew.Src→forall(OrigSelf | … OrigSelf.x …). 

For a certain expression and bj, the replacement is correct for ais connected to bj. 
Since ϕAtoB holds, thus, each ai is connected with at least one bj and evaluation 
checkes each bj of the model, thus, the replacement is correct for all ais of the 
model. Note that the outermost forall expression ensures that different 
navigation/attribute calls of the constraint are using the same ai (since the value of 
OrigSelf does not change), thus the attributes/navigation of ais are not mixed up. 

ϕManyOnBoth: RelocateConstraint(#14- 21) and RelocateConstraint(#28-34) are 
used. Firstly an encapsulating forall expression is added if there is a 
navigation/attribute call of form selfOld.x (where x<>”Dest”) or a selfOld.Dest 
expression without forall. The construction from ϕManyOnSrc. Secondly, the forall 
expressions of the original constraint are replaced according to constructs used in 
ϕManyOnDest. 

The replacement of the expression selfOld.x (x<>”Dest”) in a certain ai is correct 
for each bj∈To(ai, Dest) according to constructs used in ϕManyOnSrc Moreover, the 
replacement of these type of expressions is also correct in general (because of 
ϕAtoB). However, it is possible that the expression is evaluated in a certain ai more 
then once (more precisely once for each element of To(ai, Dest)). 

The replacement of the expression selfOld.Dest →forall is correct according to 
constructs used in ϕManyOnDest. Multiplicity ‘MoreThanOne’ on the source side does 
not affect this correctness, because the updated expressions use navigations only 
from context B, thus, it is not important how many ais are connected with the 
current bj. 

This is not the case with expressions of form selfOld.Dest->Exp, where Exp is not 
forall. Here navigation back to the original context is mandatory, thus the original 
expressions is transformed into selfNew.Src.Dest->Exp. Relocation is correct in this 
case if the value of selfOld can be replaced by selfNew.Src. However, the function 
ForAllCheck returns true at the condition at RuleConstraint(#14), which means 
that the constraint is encapsulated by a new forall as in ϕManyOnSrc. This forall 
expression ensures that for a certain bj, the constraint is evaluated for all items of 
the set selfNew.Src seperately (for all ais connected with bj). Moreover ϕBtoA holds, 
which means that all ais are checked by the relocated constraint. This means that 
the relocation is correct in this case as well. 
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The possible multiplicity combinations were tested, we have proved that the 
RelocateConstraint rule is correct in all cases. 

Conclusions 

Textual constraints are useful in order to extend visual model definitions and 
create precise models. OCL is one of the most popular textual constraint language, 
it is used to provide precise, unambiguous definitions in several modeling 
techniques such as UML, or metamodeling techniques in general. One of the key 
features of OCL is the mathematical formalism based on set theory with a notion 
of an object model and system states. This formalism describes the syntax and 
semantics of OCL and it can prove the completeness of the models using OCL, 
but it does not contain the definition of constraint evaluation, dynamic behavior of 
the constraint expressions. Due to this limitation of the OCL formalism, it cannot 
be used to prove the correctness of dynamic, OCL manipulating algorithms, for 
example our optimization algorithms. 

This paper has presented OCLASM, a new formalism for OCL. The paper has 
presented the main reasons, why a new formalism was created instead of 
extending the original formalism, or one of its extensions. The new formalism is 
based on the popular ASM technology, it can be used to study the dynamic 
behavior in a compact, yet rigorous way. The basic idea of the formalism is to 
create rules for all language expressions, such as iterate, and use these rules to 
simulate the validation. OCLASM handles the constraints as a sequence of 
statements and expressions and it navigates through these programming units 
using a function pointing to the current expression. Model-based operations and 
constraint expression retrievals use monitored (external) functions showing that 
constraint validation must be independent from the current model and constraint 
representation. The mechanism of the formalism method has been shown 
including how to handle language construct, such as tuple types, or collections. 
The formal definition of OCLASM has also been presented and the paper also 
includes several rules for the most important language constructs. Using the new 
formalism of OCL, it is possible to create and validate algorithms based on OCL. 
The paper has shown how to use OCLASM in order to define RelocateConstraint 
algorithm (which is used in constraint optimization) and how to prove its 
correctness formarly. Future work mainly consists of continuing this work and 
prove the correctness of other optimization algorithms as well. 
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