
Electronic Communications of the EASST
Volume 21 (2009)

Proceedings of the
3rd International Workshop on

Multi-Paradigm Modeling
(MPM 2009)

Toward Automated Verification of Model Transformations: A Case
Study of Analysis of Refactoring Business Process Models

Márk Asztalos, László Lengyel and Tihamér Levendovszky

5 pages

Guest Editors: T. Levendovszky, L. Lengyel, G. Karsai, C. Hardebolle
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236423027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ECEASST

Toward Automated Verification of Model Transformations: A Case
Study of Analysis of Refactoring Business Process Models

Márk Asztalos, László Lengyel and Tihamér Levendovszky

Budapest University of Technology and Economics
Department of Automation and Applied Informatics

Magyar Tudósok körútja 2., I. em., Budapest, H-1111, Hungary
{asztalos, lengyel, tihamer}@aut.bme.hu

Abstract: Verification of the transformations is a fundamental issue for applying
them in real world solutions. We have previously proposed a formalization to declar-
atively describe model transformations and proposed an approach for the verifica-
tion. Our approach consists of a reasoning system that works on the formal trans-
formation description and deduction rules for the system. The reasoning system can
automatically generate the proof of some properties. In this paper, we present a case
study, to demonstrate our approach of automated verification of model transforma-
tions in a multi-paradigm environment.

Keywords: model transformations, automated verification, offline analysis

1 Introduction
In Multi-Paradigm Modeling , model transformations are used to transform models between
different paradigms (for example, synchronization), or for generating new models by compos-
ing existing models (for example, generating source code using different models in different
paradigms) . Verification of model transformations means proving some properties of the model
transformations functional and non-functional properties as well, and some properties of the
models under transformation. The analysis of a transformation is called offline, when only the
definition of the transformation itself and the metamodels of the target and source languages are
used during the analysis process and no concrete input models are taken into account. Formal
verification methods proposed in related work can usually be applied only to a certain (type of)
transformation or for the analysis of only a certain (type of) property (see Section 3 for details).
Moreover, many of these methods can only be applied manually, therefore, no automation can
be built in the analysis process at all.

2 Background
Graph rewriting-based model transformations offer a strong mathematical background for the
formalization and analysis of model transformations [EEPT06] . In model transformation frame-
works, each transformation consists of separate rules and an additional control structure (control
flow) that defines the execution order of the rules. Models can be considered special graphs, for
these applications, attributed typed graphs have been introduced.

Previously [ALL09], we have introduced the terms transformation description and assertion:
an assertion is a formal expression that describes some characteristics of a model under trans-
formation or the model transformation itself. Informally, a transformation description is a set

1 / 5 Volume 21 (2009)



Toward Automated Verification of Model Transformations

of assertions. In other words, an assertion states something about the model or the model trans-
formation. We want our system to prove if some assertions are true or prove if they are false.
We have proposed the formal definition language for describing the assertions. We have also
defined deduction rules for the reasoning system that works on an initial assertion set that de-
scribe a model transformation and may derive some more assertions automatically applying the
deduction rules. We want to generate some assertions automatically from the very definition of
the model transformations. We also let the developer of the model transformation to provide
additional assertions for different parts of the transformation manually, therefore, the knowledge
of domain experts can be used. The reasoning system should use these assertions as well.

3 Related Work
Offline analysis of model transformations have been performed in several cases, but the ap-
proaches presented can usually be applied for only certain (type of) transformations, or only
for certain (type of) properties. In [Var02], syntactic correctness and semantic correctness are
aimed to be verified by the VIATRA transformation system. Converting system models into
Kripke structures allows to verify certain properties of a single transformation starting from a
single model. [KN08] presents how behavior preservation of a model transformation can be ver-
ified via goal-directed certification. The proposed verification realized in GReAT is based on the
generation of assurances for code produced by automatic synthesis tools. Some papers propose
approaches for verification of model transformations in special domains, such as mechatronic
systems [BGL05], or Java code generation [BBG+06]. [ABK07] presents an approach similar
to the one presented in this paper: UML metamodels along with embedded well-formedness
rules (typically OCL constraints) can be translated to the formalism Alloy. Then, the Alloy An-
alyzer can conduct fully automated analysis of the transformation. The difference between our
approach and the one presented in that paper is that the Alloy Analyzer uses a simulation that
generates a random instance model of the input metamodel, then analyzes the behavior of the
transformation by transforming this instance model.

4 Business Process Modeling
VMTS is our n-level metamodeling and model transformation framework that applies the MPM
concept. Business Process Model Notation (BPMN) and Business Process Execution Language
(BPEL) are both standards for describing business process models [AML09]. In VMTS, for each
business process, a BPMN and a BPEL model is created describing different aspects of the same
system, therefore, we apply an MPM concept. Model transformations have been implemented
from BPMN to BPEL and in the reverse direction as well. The presentation of the whole con-
cept, and the BPMN, and BPEL metamodels are detailed in [AML09]. A fundamental part of
the transformation from BPMN to BPEL is to flatten BPMN models, which is an in-place trans-
formation that works on a single BPMN model. Figure 1 presents the BPMN metamodel, the
transformation control flow, and the rules. Each rule is applied exhaustively.

In the following, we outline the main elements of the analysis that is performed by the rea-
soning system automatically. The properties that should be analyzed are the properties presented
above: (i) all nodes of type BPMNComposite will be deleted. (ii) All edges of BPMNContain-
ment will be deleted. (iii) If a path exists between two nodes of type other than BPMNComposite
through edges of type BPMNSequenceFlow, it will be so after the transformation. (i) and (ii)

Proc. MPM 2009 2 / 5



ECEASST

can be described by assertions presented in Section 2 , but (iii) cannot be expressed by means
of assertions. This is an abstract property that is not understandable by the reasoning system,
therefore, in this case, we need to manually define what properties should be hold for the trans-
formation that results (iii). If the property (iii) was true before rule1, then it will be so after the
execution of this rule, since this rule performs the refactoring operation by its definition. rule2
does not modify the property either, since it only deletes edges of type BPMNContainment,
which does not take part in the paths. The third rule, rule3, deletes a node of type BPMNCom-
posite. We can state that if there is no incoming, or outgoing edge of type BPMNSequenceFlow,
then this rule does not modify the property either, since, in this case, all paths remain unmodi-
fied. But if there are edges of type BPMNSequenceFlow, then this rule may modify some paths
in the model. Until this point, we have presented the discussion of the property (iii), this must be
performed manually by domain experts, since this property cannot be expressed in the formalism
used to describe the transformation. The automated analysis should be used to help the proof of
the property. In this case, we want to prove with the reasoning system, the there are no incoming
or outgoing edges to or from nodes of type BPMNComposite before rule3. If this property can
be proven, than (iii) can be proven as well.

VMTS automatically generates a transformation description from the flattening transforma-

(a) BPMN Metamodel of models
under transformation

rule
1

rule
2

rule
3

(b) Transformation BPMN Flattening

c

a

e

types of nodes:

c:BPMNComposite

a:BPMNFlowObject

types of edges:

e:BPMNContainment

c

a

(c) Rule 2 of Transforma-
tion BPMN Flattening

c

types of nodes:

c:BPMNComposite

(d) Rule 3 of Trans-
formation BPMN Flat-
tening (RHS is empty)

s

types of nodes:

s: BPMNFlowObject

c:BPMNComposite

t:BPMNFlowObject

f:BPMNFlowObject

l:BPMNFlowObject

c t

f l

attribute constraints:

f.IsFirst = true

f.IsLast = false

l.IsFirst = false

l.IsLast = true

e
1

e
2

e
3

e
4

types of edges:

e :BPMNSequenceFlow
1

e :BPMNSequenceFlow

e :BPMNContainment

e :BPMNContainment

2

3

4

s c t

f l

attribute constraints:

f.IsFirst = false

f.IsLast = false

l.IsFirst = false

l.IsLast = false

e
5

e
6

e
3

e
4

types of edges:

e :BPMNSequenceFlow
5

e :BPMNSequenceFlow
6

(e) Rule 1 of Transformation BPMN Flattening

Figure 1: Definition of the transformation BPMN Flattening and the metamodel of the models

3 / 5 Volume 21 (2009)



Toward Automated Verification of Model Transformations

e

types of edges:

e:BPMNContainment

(a) Pattern
P1

s

types of nodes:

s: BPMNFlowObject

c:BPMNComposite

c
e

1

types of edges:

e :BPMNSequenceFlow
1

(b) Pattern P2

types of nodes:

c:BPMNComposite

t:BPMNFlowObject

c t
e

2

types of edges:

e :BPMNSequenceFlow
2

(c) Pattern P3

s

types of nodes:

s: BPMNFlowObject

c:BPMNComposite

t:BPMNFlowObject

c t
e

1
e

2

types of edges:

e :BPMNSequenceFlow
1

e :BPMNSequenceFlow
2

(d) Pattern P4

s
1

types of nodes:

s : BPMNFlowObject

c:BPMNComposite

1

s : BPMNFlowObject
2

c
e

1

types of edges:

e :BPMNSequenceFlow
1

e :BPMNSequenceFlow
2

s
2

e
2

(e) Pattern P5

types of nodes:

c:BPMNComposite

t :BPMNFlowObject
1

t :BPMNFlowObject
2

c t
2

e
2

types of edges:

e :BPMNSequenceFlow

e :BPMNSequenceFlow

1

2

t
1

e
1

(f) Pattern P6

Figure 2: Additional patterns used in assertions

tion. This description describes the control flow, which has three steps conforming to the three
rules of the transformation. Assertions describing the rules and the preconditions of the suc-
cessful application of the rules are also generated. Let PLHSi , and PRHSi the patterns in the left
hand side and right hand side of rulei (i = 1,2,3). The generated assertions are as follows:
pre(rulei) Exists PLHSi (i = 1,2,3) , and atsucc(rulei) ForEach PLHSi → PRHSi (i = 1,2,3).

In the following, we will refer patterns depicted in Figure 2 . We need to add some asser-
tions manually that define some properties that must be true for the input model: (1) Each
edge of type BPMNContainment must have a left node of type BPMNComposite and a right
node (since, dangling edges are forbidden): before(rule1) Any P1 → PLHS2 (2) It is forbidden
that a node of type BPMNComposite has two incoming edges of type BPMNSequenceFlow:
before(rule1) None P3. (3) Similarly, it is forbidden that a node of type BPMNComposite has
two outgoing edges of type BPMNSequenceFlow: before(rule1) None P4 (4) Each node of type
BPMNComposite must have one incoming edge of type BPMNSequenceFlow, one outgoing edge
of type BPMNSequenceFlow, and a first and last node connected by edges of type BPMNCon-
tainment: before(rule1) Any PLHS3 → PLHS1 .

We have provided all information needed for the automated reasoning, except the deduction
rules of the reasoning system, but it would exceed the limits of this paper. In the following, we
describe the properties to be verified by formal assertions and informally outline the main steps
of the reasoning that is performed completely by the reasoning system automatically:

• Property (i): after(rule3) None PLHS3 . This assertion can be derived, since PLHS3 is the left
hand side of rule3 that is applied exhaustively, until it cannot be applied anymore. A rule
cannot be applied, when no instances of the left hand side can be found in the input model.

• Property (ii): after(rule3) None PLHS2 (By the metamodel). We can prove that the formula
Any P1 → P2 can be propagated through the whole control flow, therefore, this formula is
true at any point of the transformation. after(rule2) None PLHS2 is true because PLHS2 , and
rule2 is applied exhaustively. If there was an instance of P1 in the model under transfor-
mation, there should be an instance of PLHS2 as well, which is a contradiction, therefore,
there are no instances of P1 after the application of rule2. Formula None P1 can be eas-
ily propagated through rule3, which means that if before(rule3) None P1 is true, then
after(rule3) None P1 is true as well.

Proc. MPM 2009 4 / 5



ECEASST

• Property (iii): before(rule2) None P2, and before(rule2) None P3. From the initial asser-
tion set, it can be derived that before(rule1) Any P2 → P4, before(rule1) Any P3 → P4, and
before(rule1) Any P4 → PLHS1 . The key of the proof is the propagation of the formulas in
these assertions through the whole control flow. Since rule1 is applied exhaustively, PLHS1

cannot be present in the model under transformation after rule1, and formula None PLHS1

can be propagated through the whole control flow as well. It results the none of the patterns
P2, P3, P4 can be present at any point after rule1.

5 Conclusions
In this paper, we have demonstrated the applicability of our previously presented approach of au-
tomated verification of model transformations on a case study. We have shown that an initial as-
sertion set of the system is generated automatically from the definition of model transformations.
We have demonstrated how complex analysis is performed automatically, largely decreasing the
complexity of the verification of model transformations.

Acknowledgements: This paper was supported by the János Bolyai Research Scholarship of
the Hungarian Academy of Sciences.

Bibliography

[ABK07] K. Anastasakis, B. Bordbar, J. M. Kster. Analysis of Model Transformations via
Alloy. In Workshop MoDeVVA’07. Pp. 47–56. October 2007.

[ALL09] M. Asztalos, L. Lengyel, T. Levendovszky. A Formalism for Describing Modeling
Transformations for Verification. In MoDeVVA’09. Denver, Colorado, USA, 2009.
http://www.aut.bme.hu/Portal/asztalosmark.

[AML09] M. Asztalos, T. Mészáros, L. Lengyel. Generating Exeutable BPEL Code from
BPMN Models. In GraBaTs’09 Tool Contest. Zurich, Switzerland, 2009.

[BBG+06] B. Becker, D. Beyer, H. Giese, F. Klein, D. Schilling. Symbolic invariant verification
for systems with dynamic structural adaptation. In ICSE ’06. Pp. 72–81. ACM, New
York, NY, USA, 2006.

[BGL05] J. O. Blech, S. Glesner, J. Leitner. Formal Verification of Java Code Generation from
UML Models. In Fujaba Days. september 2005.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-
formation. Monographs in Theoretical Computer Science. An EATCS Series XIV.
Springer, 2006.

[KN08] G. Karsai, A. Narayanan. Towards Verification of Model Transformations Via Goal-
Directed Certification. ASWSD 2006, San Diego, CA, USA, March 15-17, 2006, Re-
vised Selected Papers, pp. 67–83, 2008.

[Var02] D. Varró. Towards Formal Verification of Model Transformations. In PhD Student
Workshop of FMOODS 2002. Enschede, Hollandia. 2002.

5 / 5 Volume 21 (2009)


