1,795 research outputs found
A bimodal dust grain distribution in the IC 434 HII region
Recent studies of dust in the interstellar medium have challenged the
capabilities and validity of current dust models, indicating that the
properties of dust evolve as it transits between different phases of the
interstellar medium. We conduct a multi-wavelength study of the dust emission
from the ionized gas of the IC 434 emission nebula, and combine this with
modeling, from large scales that provide insight into the history of the IC
434/L1630 region, to small scales that allow us to infer quantitative
properties of the dust content inside the H II region. The dust enters the H II
region through momentum transfer with a champagne flow of ionized gas, set up
by a chance encounter between the L1630 molecular cloud and the star cluster of
Ori. We observe two clearly separated dust populations inside the
ionized gas, that show different observational properties, as well as
contrasting optical properties. Population A is colder ( 25 K) than
predicted by widely-used dust models, its temperature is insensitive to an
increase of the impinging radiation field, is momentum-coupled to the gas, and
efficiently absorbs radiation pressure to form a dust wave at 1.0 pc ahead of
Ori AB. Population B is characterized by a constant [20/30] flux ratio
throughout the HII region, heats up to 75 K close to the star, and is
less efficient in absorbing radiation pressure, forming a dust wave at 0.1 pc
from the star. We conclude that the dust inside IC 434 is bimodal. The
characteristics of population A are remarkable and can not be explained by
current dust models. Population B are grains that match the classical
description of spherical, compact dust. Our results confirm recent work that
stress the importance of variations in the dust properties between different
regions of the interstellar medium.Comment: 18 pages, 10 figures, proposed for acceptance in A&
The 3.1 micrometer ice band in infrared reflection nebulae
Recent observations show that infrared reflection nebulae are common phenomena in star forming regions. Extensive observations were made of two nearby infrared reflection nebulae, Orin Molecular Cloud 2 IRS1 (OMC-2/IRS1) and Cepheus A IRS6a (Cep-A/IRS6a). Mie scattering models of ice coated grains were used to study the constraints on the properties and locations of grains that could produce a feature similar to that observed in OMC-2 and Cep-A. It was concluded that scattering by ice particles alone could not be responsible for the 3.1 micron feature observed in infrared reflection nebulae
Laboratory photo-chemistry of pyrene clusters: an efficient way to form large PAHs
In this work, we study the photodissociation processes of small PAH clusters
(e.g., pyrene clusters). The experiments are carried out using a quadrupole ion
trap in combination with time-of-flight (QIT-TOF) mass spectrometry. The
results show that pyrene clusters are converted into larger PAHs under the
influence of a strong radiation field. Specifically, pyrene dimer cations
(e.g., [CHCH] or CH), will
photo-dehydrogenate and photo-isomerize to fully aromatic cations (PAHs) (e.g.,
CH) with laser irradiation. The structure of new formed PAHs
and the dissociation energy for these reaction pathways are investigated with
quantum chemical calculations. These studies provide a novel efficient
evolution routes for the formation of large PAHs in the interstellar medium
(ISM) in a bottom-up process that will counteract the top-down conversion of
large PAHs into rings and chains, and provide a reservoir of large PAHs that
can be converted into C and other fullerenes and large carbon cages
Polycyclic Aromatic Hydrocarbons with armchair edges and the 12.7 {\mu}m band
In this Letter we report the results of density functional theory
calculations on medium-sized neutral Polycyclic Aromatic Hydrocarbon (PAH)
molecules with armchair edges. These PAH molecules possess strong C-H
stretching and bending modes around 3 {\mu}m and in the fingerprint region
(10-15 {\mu}m), and also strong ring deformation modes around 12.7 {\mu}m.
Perusal of the entries in the NASA Ames PAHs Database shows that ring
deformation modes of PAHs are common - although generally weak. We then propose
that armchair PAHs with NC >65 are responsible for the 12.7 {\mu}m Aromatic
Infrared Band in HII regions and discuss astrophysical implications in the
context of the PAH life-cycle.Comment: Minor editin
Composition, structure and chemistry of interstellar dust
The observational constraints on the composition of the interstellar dust are analyzed. The dust in the diffuse interstellar medium consists of a mixture of stardust (amorphous silicates, amorphous carbon, polycyclic aromatic hydrocarbons, and graphite) and interstellar medium dust (organic refractory material). Stardust seems to dominate in the local diffuse interstellar medium. Inside molecular clouds, however, icy grain mantles are also important. The structural differences between crystalline and amorphous materials, which lead to differences in the optical properties, are discussed. The astrophysical consequences are briefly examined. The physical principles of grain surface chemistry are discussed and applied to the formation of molecular hydrogen and icy grain mantles inside dense molecular clouds. Transformation of these icy grain mantles into the organic refractory dust component observed in the diffuse interstellar medium requires ultraviolet sources inside molecular clouds as well as radical diffusion promoted by transient heating of the mantle. The latter process also returns a considerable fraction of the molecules in the grain mantle to the gas phase
Evaluation of the Multiplane Method for Efficient Simulations of Reaction Networks
Reaction networks in the bulk and on surfaces are widespread in physical,
chemical and biological systems. In macroscopic systems, which include large
populations of reactive species, stochastic fluctuations are negligible and the
reaction rates can be evaluated using rate equations. However, many physical
systems are partitioned into microscopic domains, where the number of molecules
in each domain is small and fluctuations are strong. Under these conditions,
the simulation of reaction networks requires stochastic methods such as direct
integration of the master equation. However, direct integration of the master
equation is infeasible for complex networks, because the number of equations
proliferates as the number of reactive species increases. Recently, the
multiplane method, which provides a dramatic reduction in the number of
equations, was introduced [A. Lipshtat and O. Biham, Phys. Rev. Lett. 93,
170601 (2004)]. The reduction is achieved by breaking the network into a set of
maximal fully connected sub-networks (maximal cliques). Lower-dimensional
master equations are constructed for the marginal probability distributions
associated with the cliques, with suitable couplings between them. In this
paper we test the multiplane method and examine its applicability. We show that
the method is accurate in the limit of small domains, where fluctuations are
strong. It thus provides an efficient framework for the stochastic simulation
of complex reaction networks with strong fluctuations, for which rate equations
fail and direct integration of the master equation is infeasible. The method
also applies in the case of large domains, where it converges to the rate
equation results
Studies of low-mass star formation with the large deployable reflector
Estimates are made of the far-infrared and submillimeter continuum and line emission from regions of low mass star formation. The intensity of this emission is compared with the sensitivity of the large deployable reflector (LDR), a large space telescope designed for this wavelength range. The proposed LDR is designed to probe the temperature, density, chemical structure, and the velocity field of the collapsing envelopes of these protostars. The LDR is also designed to study the accretion shocks on the cores and circumstellar disks of low-mass protostars, and to detect shock waves driven by protostellar winds
Infrared emission associated with chemical reactions on Shuttle and SIRTF surfaces
The infrared intensities which would be observed by the Shuttle Infrared Telescope Facility (SIRTF), and which are produced by surface chemistry following atmospheric impact on SIRTF and the shuttle are estimated. Three possible sources of reactants are analyzed: (1) direct atmospheric and scattered contaminant fluxes onto the shuttle's surface; (2) direct atmospheric and scattered contaminant fluxes onto the SIRTF sunshade; and (3) scattered fluxes onto the cold SIRTF mirror. The chemical reactions are primarily initiated by the dominent flux of reactive atomic oxygen on the surfaces. Using observations of the optical glow to constrain theoretical parameters, it is estimated for source (1) that the infrared glow on the SIRTF mirror will be comparable to the zodiacal background between 1 and 10 micron wavelengths. It is speculated that oxygen reacts with the atoms and the radicals bound in the organic molecules that reside on the shuttle and the Explorer surfaces. It is concluded that for source (2) that with suitable construction, a warm sunshade will produce insignificant infrared glow. It is noted that the atomic oxygen flux on the cold SIRTF mirror (3) is insufficient to produce significant infrared glow. Infrared absorption by the ice buildup on the mirror is also small
ISO Spectroscopy of the Young Bipolar Nebulae S106 IR and Cep A East
We present the results of ISO SWS and LWS grating scans towards the embedded
Young Stellar Objects (YSOs) S106 IR and Cep A East. Emission from the pure
rotational lines of H2 and the infrared fine structure lines of [C II], [O I],
[S I], [Si II] and [Fe II], as well as absorption bands due to H2O, CO and CO2
ice were detected toward Cep A. In S106 we detected emission lines of H2, CO, H
I, and a large number of ionized species including Fe, O, N, C, Si, S, Ne and
Ar. S106 also shows many of the infrared PAH bands in emission. Excitation
temperatures and molecular hydrogen masses were derived from the low-lying pure
rotational levels of H2 and are 500 and 730 K and 8 and 3 x 10^{-3} solar
masses for S106 and Cep A, respectively. Since both objects are expected to
have several solar masses of H2 in their environment, we conclude that in both
cases the bulk of the H2 is cooler than a few hundred Kelvins. Excitation
temperatures and line ratios were compared with those predicted by theoretical
models for PDRs and dissociative and non-dissociative shocks. The [S I] 25.2
micron/[Si II] 34.8 micron ratio is a particularly useful shock versus PDR
discriminant and we conclude that S106 IR is dominated by PDR emission while
Cep A East has a large shock component. From an analysis of the ionic lines in
S106 we conclude that the central star must have a temperature around 37,000 K,
corresponding to a spectral type of O8. From its luminosity it is concluded
that the driving source of Cep A must also be a massive early-type star. The
absence of strong high-ionization ionic lines in its ISO spectrum shows that
Cep A has not yet created a significant H II region and must be younger than
S106, illustrating the process of the clearing of the surroundings of a massive
young star.Comment: 15 pages (including 10 figures), to appear in Astronomy &
Astrophysic
Mapping PAH sizes in NGC 7023 with SOFIA
NGC 7023 is a well-studied reflection nebula, which shows strong emission
from polycyclic aromatic hydrocarbon (PAH) molecules in the form of aromatic
infrared bands (AIBs). The spectral variations of the AIBs in this region are
connected to the chemical evolution of the PAH molecules which, in turn,
depends on the local physical conditions. We use the capabilities of SOFIA to
observe a 3.2' x 3.4' region of NGC 7023 at wavelengths that we observe with
high spatial resolution (2.7") at 3.3 and 11.2 um. We compare the SOFIA images
with existing images of the PAH emission at 8.0 um (Spitzer), emission from
evaporating very small grains (eVSG) extracted from Spitzer-IRS spectral cubes,
the ERE (HST and CFHT), and H_2 (2.12 um). We create maps of the 11.2/3.3 um
ratio to probe the morphology of the PAH size distribution and the 8.0/11.2 um
ratio to probe the PAH ionization. We make use of an emission model and of
vibrational spectra from the NASA Ames PAHdb to translate the 11.2/3.3 um ratio
to PAH sizes. The 11.2/3.3 um map shows the smallest PAH concentrate on the PDR
surface (H_2 and extended red emission) in the NW and South PDR. We estimated
that PAHs in the NW PDR bear, on average, a number of carbon atoms (N_c) of ~70
in the PDR cavity and ~50 at the PDR surface. In the entire nebula, the results
reveal a factor of 2 variation in the size of the PAH. We relate these size
variations to several models for the evolution of the PAH families when they
traverse from the molecular cloud to the PDR. The PAH size map enables us to
follow the photochemical evolution of PAHs in NGC 7023. Small PAHs result from
the photo-evaporation of VSGs as they reach the PDR surface. Inside the PDR
cavity, the PAH abundance drops as the smallest PAH are broken down. The
average PAH size increases in the cavity where only the largest species survive
or are converted into C_60 by photochemical processing.Comment: accepted for publication in A&
- …