182 research outputs found

    Phosphorus supply affects seedling growth of mycorrhizal but not cluster-root forming jarrah-forest species

    Get PDF
    Aims Fertiliser is often used to kick-start ecological restoration despite growing evidence of the potentially negative impacts on plant diversity. Jarrah (Eucalyptus marginata) forest species growing on nutrient (especially phosphorus) impoverished soils in southwestern Australia have a suite of adaptations for phosphorus (P) acquisition, including the formation of cluster roots, and associations with mycorrhizal fungi. Here we investigated how escalating P supply, along with a stoichiometric adjustment of nitrogen (N) supply, impacted the growth and nutrition of a wide range of jarrah forest seedlings. Methods In a pot experiment, we measured seedling biomass and nutritional responses of 12 jarrah forest species to a gradient of P supply in relation to N supply, and for the mycorrhizal species, inoculation with arbuscular mycorrhizal fungi. Results Three cluster-root forming species did not respond to increasing P, probably because they were reliant on seed P. Generally, mycorrhizal species showed a positive biomass response to increasing P when N was available. Mycorrhizas benefited seedling growth at low P (9 mg P added per kg of jarrah forest soil) when N was also available, and were parasitic to seedling growth at high P (243 mg P/ kg soil) without additional N. Conclusions These results highlight importance of P and N supply in determining the nature of the symbiosis between plants and mycorrhizal fungi. Since P supply has the potential to reduce plant growth, for a range of species, our results suggest careful consideration of fertiliser amounts for ecological restoration of ecosystems adapted to nutrient poor soils

    Low molecular weight organic anions (carboxylates) increase microbial activity and alter microbial community composition in uncontaminated and diesel contaminated soil

    Get PDF
    Petroleum hydrocarbons (PHCs) are among the most prevalent sources of environmental contamination. It has been hypothesized that plant root exudation of low molecular weight organic acid anions (carboxylates) may aid degradation of PHCs by stimulating heterotrophic microbial activity. We, therefore, applied two commonly-exuded carboxylates (citrate and malonate) to uncontaminated and diesel contaminated microcosms (10,000 mg kg–1; aged 40 days) to determine their impact on the microbial community and PHC degradation. Every 48 hours for 18 days, soil received 5 ÎŒmol g–1 of i) citrate, ii) malonate, iii) citrate + malonate or iv) water. Microbial activity was measured daily as the flux of CO2. After 18 days, changes in the microbial community were assessed by community level physiological profiles and 16S rRNA bacterial community profiles determined by denaturing gradient gel electrophoresis. Saturated PHCs remaining in the soil were assessed by GCMS. Cumulative soil respiration increased four- to six-fold with the addition of carboxylates, while diesel contamination resulted in a small, but similar, increase across all carboxylate treatments. The addition of carboxylates resulted in distinct changes to the microbial community, but only a small decrease in the n-C17: pristane biomarker. We conclude that carboxylate addition can increase microbial activity and modify the microbial community in both uncontaminated and diesel-contaminated soils. The impact of these changes on PHC biodegradation and rhizosphere processes, more generally, merits further research

    Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms

    Get PDF
    Petroleum hydrocarbons (PHCs) are among the most prevalent sources of environmental contamination. It has been hypothesized that plant root exudation of low molecular weight organic acid anions (carboxylates) may aid degradation of PHCs by stimulating heterotrophic microbial activity. To test their potential implication for bioremediation, we applied two commonly exuded carboxylates (citrate and malonate) to uncontaminated and diesel-contaminated microcosms (10 000 mg kg−1; aged 40 days) and determined their impact on the microbial community and PHC degradation. Every 48 h for 18 days, soil received 5 ”mol g−1 of (i) citrate, (ii) malonate, (iii) citrate + malonate or (iv) water. Microbial activity was measured daily as the flux of CO2. After 18 days, changes in the microbial community were assessed by a community-level physiological profile (CLPP) and 16S rRNA bacterial community profiles determined by denaturing gradient gel electrophoresis (DGGE). Saturated PHCs remaining in the soil were assessed by gas chromatography–mass spectrometry (GC-MS). Cumulative soil respiration increased 4- to 6-fold with the addition of carboxylates, while diesel contamination resulted in a small, but similar, increase across all carboxylate treatments. The addition of carboxylates resulted in distinct changes to the microbial community in both contaminated and uncontaminated soils but only a small increase in the biodegradation of saturated PHCs as measured by the n-C17 : pristane biomarker. We conclude that while the addition of citrate and malonate had little direct effect on the biodegradation of saturated hydrocarbons present in diesel, their effect on the microbial community leads us to suggest further studies using a variety of soils and organic acids, and linked to in situ studies of plants, to investigate the role of carboxylates in microbial community dynamics
    • 

    corecore