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suggest long-term negative
effects of phosphorus fertilizer
on biodiverse restoration after
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Despite nutrient enrichment having widely reported negative impacts on

biodiversity, fertilizer is routinely applied in post mining restoration to enhance

plant growth and establishment. Focusing on surface mine restoration

(predominately bauxite and mineral sands), we outline the long-term negative

impacts of fertilizer, particularly phosphorus fertilizer, on plant community

composition, species richness, fire fuel loads, and belowground impacts on

nutrient-cycling. We draw from extensive research in south-western Australia

and further afield, noting the geographical coincidence of surface mining,

phosphorus impoverished soil and high plant biodiversity. We highlight the

trade-offs between rapid plant-growth under fertilisation and the longer-term

effects on plant communities and diversity. We note that the initial growth

benefits of fertilisation may not persist in water-limited environments: growth

of unfertilised forests can eventually match that of fertilised forest, throwing

doubt on the premise that fertilisation is necessary at all.

KEYWORDS

diversity, legume, nitrogen, nutrients, rehabilitation

Introduction

Negative impacts of nutrient enrichment on biodiversity in natural and semi-natural
ecosystems are widely reported (e.g., Wheeler and Shaw, 1991; Wassen et al., 2005;
Isbell et al., 2013). Consequently, for ecosystem restoration of human-modified and
degraded landscapes, one of the first considerations is often how to reduce the legacy of
nutrient enrichment. Approaches include soil stripping and removal to reduce nitrogen
or phosphorus (hereafter N and P, respectively) concentrations (Diaz et al., 2008),
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applying carbon to reduce soil-N availability (Perry et al., 2010)
or P-mining (sensu Schelflout et al., 2015).

However, adding fertilizer to stimulate plant growth is often
a key aspect of post mining restoration and is recommended
as best practice in policy guidelines (e.g., EPA, 1995; Minerals
Council of South Africa, 2007; Tibbett, 2010; DFAT, 2016).
Further, many formal closure criteria and regulatory conditions
require outcomes such as minimum levels of plant cover (e.g.,
Kragt et al., 2019; Manero et al., 2021) – and applying fertilizer
can help achieve these goals. While well meaning, there is a risk
that these guidelines focus too narrowly on short-term outcomes
such as cover, with scant consideration to longer-term impacts
on plant community assembly.

Using examples largely drawn from restoring bauxite mines
in the Jarrah Forest of Western Australia, we outline why
fertilizer has been used in mine restoration and how application
rates compare with mining related nutrient losses. We further
outline the suboptimal outcomes that result from adding P
using examples drawn from bauxite and mineral-sands mine
restoration. We focus on surface mining of bauxite and mineral
sands because the returned soil profile is often intact (e.g., Audet
et al., 2013; Standish et al., 2015; Riviera et al., 2021), compared
with hard rock mining where novel growth substates such as
waste rock and process waste may be used. We acknowledge that
the use of soil amendments and fertilizer inputs may be essential
for overcoming initial barriers to vegetation establishment on
novel substrates (e.g., Doley and Audet, 2013; Bateman et al.,
2021). We also focus primarily on P, because P (unlike N) cannot
be replaced by biological fixation, is often the most limiting
nutrient in highly impoverished soils, and the source of P-input
to restored soils only comes from fertilizer inputs (e.g., organic
and inorganic fertilizers). Regolith weathering contributes P to
soils too, but occurs over such impressively long time scales that
it is not usually factored into restoration and management plans.

Surface mining often occurs in
nutrient-poor, biodiverse
landscapes

Bauxite occurs in ancient landscapes that have undergone
significant periods of weathering and in situ leaching.
Consequently, we tested whether bauxite and nutrient-
deficient soils co-occur using a GIS analysis of the location of
bauxite deposits (Mason and Arndt, 1996) combined with the
location of ancient and deeply weathered nutrient-deficient
soils downloaded from the FAO Soils Portal (i.e., Acrisols,
Ferralsols, Lixisols, and Luvisols; FAO, 2012; Tibbett et al.,
2019). A layer showing the world’s plant species richness was
also added (Barthlott et al., 1999), although it should be noted
that to improve visual clarity, we simplified the original 10
zones of increasing richness into three (Figure 1).

There was a high degree of overlap between bauxite and
nutrient-deficient soils. Specifically, 54 of the 62 (87%) bauxite
deposits co-occurred with weathered, nutrient impoverished
soils (Figures 1B–D). In addition, 81% occurred in regions
of moderate (1,000–3,000 species) while 13% occurred in the
regions of highest plant diversity (≥3,000 species; Figures 1A–
D) reinforcing the link between nutrient-deficient soils and
plant biodiversity (Isbell et al., 2013). A congruence of high
diversity, a range of species adapted to nutrient-deficient
soils and bauxite deposits, highlights the importance of a
precautionary approach to applying P-fertilizer to achieve
diverse ecological restoration after bauxite mining.

Many mineral sands deposits also occur in biodiversity
hotspots (Figure 1) with 67% occurring in regions of
moderate diversity (1,000–3,000 species) and 16% in the
regions with highest diversity (≥3,000 species; Figures 1A–D).
While formed through different processes to bauxite, mineral
sands deposits are also likely to be nutrient impoverished.
The minerals in minerals sands (i.e., rutile, ilmenite, and
zircon) are originally derived from weathered igneous (e.g.,
granite, basalt) or metamorphic (e.g., schist) rocks, transported
in fluvial systems and deposited in beach, lake, or river
environments where the minerals are concentrated by wave
action. Consequently, mineral sands deposits are often highly
permeable, which together with the rapid weathering and
leaching of minerals, forms sandy soils of low fertility (e.g.,
Richard’s Bay, South Africa; Lubke et al., 1996).

In regions with weathered nutrient-deficient soils
a significant proportion of species can have specialised
adaptations for nutrient acquisition, such as cluster roots and
exudation of carboxylates (e.g., Lambers et al., 2008), and/or
have conservative growth rates (Daws et al., 2021a). These
traits likely contribute to the sensitivity of restored ecosystems
in these nutrient-deficient environments to applied-P. In
addition, a range of species that occur in P-impoverished soils
have been shown, at least in controlled conditions, to exhibit
symptoms of toxicity to P when is added at concentrations
greater than they would normally experience in native soils
(Lambers et al., 2002; Shane et al., 2004; Pang et al., 2010;
Williams et al., 2019; Tibbett et al., 2021). Further, the results
of Holmes (2001) suggest that direct P-toxicity can occur in
a field restoration setting. The potential for direct toxicity of
applied-P to impact on restoration outcomes in regions with
nutrient-deficient soils suggests a cautious approach to using
fertilizer in these environments is appropriate and requires
further investigation.

Fertilizer inputs to mine
restoration

As part of the strip-mining process, topsoil and overburden
are removed, stockpiled and replaced during restoration.
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FIGURE 1

(A) The distribution of global biodiversity hotspots overlaid with bauxite and mineral sands (titanium/zirconium) deposits. Insets B–D are close
ups of three regions in (B) West Africa, (C) South East Asia and (D) South West Australia to demonstrate the overlap between biodiversity
hotspots, four ancient soil types (Acrisols, Ferralsols, Lixisols, and Luvisols) and bauxite and mineral sands (titanium/zirconium) deposits.

Handling large material volumes can result in mixing and
redistribution of nutrients across the reconstructed soil profile.
Furthermore, removing above-ground vegetation, prior to
mining, may reduce the overall nutrient stock leading to the

perception that fertilizer inputs are required to “kick-start”
nutrient-cycling (e.g., Grant et al., 2007).

For the Jarrah Forest in western Australia, fertilizer use
in mine restoration commenced in the early 1980s and was
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motivated by these goals: (1) re-establishing nutrient reserves
in the soil, (2) re-establishing vegetation productivity, especially
to maximize tree growth and future timber production, and (3)
rapidly stabilizing restored surfaces to minimize erosion (Koch,
1985; Grant et al., 2007). These outcomes were reinforced by
“Working Arrangements” with the State Government framed
around maximizing productivity and timber production.
Similar considerations have also been applied to mine sites
elsewhere (e.g., Lawrie, 1985; Petersen, 1985).

Fertilizer-P inputs to Jarrah Forest restoration have ranged
from 80 to currently between 20 and 40 kg ha−1 (Standish
et al., 2015; Tibbett et al., 2020), exceeding the estimated loss
of ca. 14 kg P ha−1 through removing 340–430 tonnes of
aboveground vegetation biomass ha−1 (Hingston et al., 1981;
John Koch unpublished data). The Jarrah Forest is a tall, closed
canopy eucalypt forest. For other restored vegetation types, such
as open eucalypt woodland at Gove in Australia’s Northern
Territory, the excess P added may be even greater since 25 kg
P ha−1 is applied (Spain et al., 2015) while the aboveground
biomass removed is only ca. 108 tonnes ha−1 (Chen et al., 2003),
although P concentrations in wood are unknown for this site.
Bauters et al. (2022) demonstrated that total above-ground P
stocks in several neotropical forests range from approx. 20–
50 kg ha−1. While these data are rare, and fertilizer rates are
often not reported, in some cases it appears excess P is applied
for restoration, above what is lost as vegetation cleared for
mining (Table 1). This could be especially true of sites where
fertilizers are applied despite minimizing P loss by returning
cleared vegetation (trunks and branches) to restoration sites
(e.g., Barbosa et al., 2022).

Fertilizer inputs to restored Jarrah Forest and at
Gove not only represent the likely addition of excess
P, but also the addition of P in readily available forms
(e.g., diammonium phosphate or superphosphate). In
contrast, the P removed pre-mining in biomass has often
been sequestered, in wood, for decades to centuries. The
conundrum is how to replace this P in a form that is
less readily available and “slow release.” One solution
may be to use rock phosphate, however, even this can
have short-term negative impacts on plant community
reestablishment (Tibbett et al., 2020), potentially because a
range of species from nutrient-impoverished environments
release carboxylates to release P from strongly sorbed forms
(Lambers et al., 2002).

Nutrient addition alters soil
geochemistry and vegetation
responses

A single initial fertilizer application to bauxite mining
restoration in the Jarrah Forest can elevate available

TABLE 1 Available information on fertilizer-P application rates
applied to restored bauxite and mineral sands mines.

Habitat type Country Elemental
P-application rates

Bauxite mines

Eucalyptus (Jarrah)
forest

Darling Range, WA,
Australia

20–40 kg ha−1 [20, 22]

Open Eucalyptus
woodland

Gove, NT, Australia 25 kg ha−1 [19]

Eucalyptus
woodland

Weipa, Queensland,
Australia

26 kg ha−1 [17]

Semideciduous
forest

Poços de Calda, Minas
Gerais, Brazil

338 kg ha−1 [4]

Montane forest Ouro Preto, Minas
Gerais, Brazil

0 kg ha−1 [11]

Semideciduous
montane forest

Descobarto, Minas
Gerais State, Brazil

Applied but P-application
rate not specified [2,10]

Tropical evergreen
forest

Trombetas, Pará State,
Brazil

Unclear if fertilizer was
applied [13]; 69 kg ha−1 [9]

Tropical evergreen
forest

Paragominas, Pará State,
Brazil

29 kg ha−1 applied at
planting, but total rate
unclear as P was also applied
prior to planting [3, 8];
Unclear if fertilizer was
applied [15];

Mineral sands mines

Kwongan Eneabba, WA, Australia Applied but P-application
rate not specified [12, 16]

Kwongon Cooljarloo, WA,
Australia

Applied but P-application
rate not specified [16]

Banksia woodland Perth, WA, Australia Applied but P-application
rate not specified [21]

Open woodland Wemen, Victoria,
Australia

Unclear if fertilizer was
applied [18]

Coastal rainforest Coffs Harbour, NSW,
Australia

20 kg ha−1 [6]

Open
forest/woodland

Stradbroke Island,
Queensland, Australia

Unclear if fertilizer was
applied [24]; Applied but
P-application rate not
specified [1]

Coastal dune forest Richard’s bay, KwaZulu
Natal, South Africa

Unclear if fertilizer was
applied [7, 23]

Succulent Karoo Brand-se-Baai,
Namaqualand,
South Africa

Unclear if fertilizer was
applied [5, 14]

Numbers in parentheses relate to the references below the table.
1 Audet et al. (2013); 2 Balestrin et al. (2020); 3 Barbosa et al. (2022); 4 Bizuti et al. (2020);
5 Blood (2006); 6 Cummings et al. (2005); 7 Lubke et al. (1996); 8 Martins et al. (2021);
9 Melo et al. (2018); 10 Neto et al. (2014); 11 Onésimo et al. (2021); 12 Osborne and
Schatral (1997); 13 Parrotta and Knowles (2001); 14 Pauw et al. (2018); 15 Ribeiro et al.
(2019); 16 Riviera et al. (2021); 17 Short et al. (2000); 18 Sluiter et al. (2016); 19 Spain
et al. (2018); 20 Standish et al. (2015); 21 Stevens et al. (2016); 22 Tibbett et al. (2020); 23
Van Aarde et al. (1998); 24 Van Gorp and Erskine (2011).

(bicarbonate extractable) soil P concentrations for more than
20 years (Banning et al., 2008; Daws et al., 2021a) suggesting
that applying P at the onset of restoration, may have long-term
ongoing impacts on vegetation responses. In addition, at Gove
bauxite mine, Spain et al. (2018) demonstrated that labile-P and
long-term P concentrations in near-surface soils increase over
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a 26-year period following an initial P-application suggesting
fertilizer-induced alterations to geochemical processes and
nutrient-cycling.

Fertilizer addition can benefit weeds in restored systems
(Daws et al., 2021a; Holmes, 2001). P can also preferentially
benefit species such as N2-fixing legumes (e.g., Acacia spp.).
N2-fixing species may benefit when fertilizers containing
only P are used (since they themselves are not limited by
N-availability) and because of a mismatch in the timeframes
of availability of applied N and P. Specifically, applied-N can
be lost rapidly from the soil due to leaching or volatilisation
(depending on the form of the applied N and soil pH).
Therefore, any potential growth benefit of applying N is
short-term while P may be available over the longer term.
A vigorous growth response of weeds and/or legumes can
result in other species being outcompeted leading to reduced
understorey diversity (Daws et al., 2015, 2019a, 2021a). These
reductions in species richness can be significant. For example,
species richness in 20-year-old restored Jarrah Forest sites
was reduced between 20 and 25% as the initial fertilizer-
P application rate increased from 0 to 80 kg ha−1 (Daws
et al., 2019a) and slow-growing resprouter species, that are
important for post-fire resilience, were particularly impacted
(Daws et al., 2019a,b, 2021a). While these negative impacts of
a single, initial application of P-fertilizer on species richness
and community composition persist for at least 20 years we
are still learning about fertilizer impacts on long(er)-term
vegetation trajectories.

The establishment of a dominant legume layer may also
result in restored sites being locked into alternate successional
pathways (Grant, 2006) at least partly because legumes may
produce large quantities of leaf litter and debris that limits
seedling emergence and establishment of other species (Tibbett,
2010; Boyes et al., 2011; Le Stradic et al., 2014; Daws et al.,
2019a,b). In the Jarrah Forest, vigorous legume establishment,
combined with the formation of a prolific soil seed bank
can result in the establishment of a “legume-cycle” where
legumes rapidly germinate from the soil seed bank, and
re-establish dominance, post fire (Grigg and Grant, 2009).
Legume dominance has also been reported in restored sites on
Stradbroke Island, Australia (Rogers and Mokrzecki, 1984) and
at Richard’s Bay in South Africa. At Richard’s Bay, Vachellia
karoo (Hayne) Banfi & Galasso dominates some restored sites
and can arrest succession for 50 or more years (Boyes et al.,
2011). While it is unclear whether the initial establishment and
dominance of V. karoo was facilitated by P-addition (Table 1),
Van Aarde et al. (1998) reported significantly higher soil-
P concentrations in younger restored sites than either older
restored sites or unmined reference forest suggesting that
fertilizer was applied. Interestingly on Stradbroke Island, a
similar pattern has been observed with the N2-fixing species
Allocasuarina littoralis (Salisb.) L. A. S. Johnson (Casuarinaceae)
dominating some restored sites and supressing other species

by producing a dense layer of “needles” (leaf litter) on the soil
surface (Audet et al., 2013). Further studies into the dominance
of N2-fixing species in restored sites and interactions with
fertilizer application would be of value.

The increased growth of P-responsive legumes and
production of leaf litter and debris can also increase fire
fuel load accumulation and fire risk. For example, an initial
application of 80 kg P ha−1 at the outset of restoration resulted
in the litter depth (and hence fine fuel loads) in 15-year-old
restored sites being increased 3-times compared to unfertilized
sites (Daws et al., 2019a). Similarly, at Gove, adding an initial
25 kg P ha−1 resulted in litter depth being elevated by about
3-times in 25-year-old restored sites compared to non-mined
sites. This was due to a combination of not only increased litter
inputs, but also reduced litter decomposition rates suggesting
ongoing impacts on microbial and decomposer communities
(Spain et al., 2015).

A vigorous response of legumes to applied-P also increases
atmospheric N2-fixation, thereby increasing soil-N pools, which
can be a goal of restoration where the intent is to increase
N-availability for maximizing tree growth (Koch, 1985; Ward
and Koch, 1995). For example, following application of an
initial 80 kg P ha−1, N2 fixation rates of up to 207 kg N ha−1

year−1 have been reported in Jarrah Forest restoration (Koch,
1987). However, these rates far exceed fixation rates of 7 kg N
ha−1 year−1 reported in unmined forest (Hingston, 1980). In
addition, the high rates of N-fixation are associated with a drop
of up to one unit in soil pH compared with soils in unmined
forest (Ward, 2000). The implications of these changes for soil
processes and above-ground vegetation responses are unknown
but could be significant and require further research.

In the short-term, using fertilizer in restoration appears
beneficial due to increases in both plant cover and growth of
individual plants (Daws et al., 2013). Rapid re-establishment
of cover may both minimize soil erosion (Ward, 2000) and
give the visual impression that restoration efforts have been
successful. However, the growth benefits may not persist. For
example, in restored Jarrah Forest height and diameter growth
of jarrah trees (Eucalyptus marginata Sm.) from 0 to 9 years-of-
age increases with applied N or P, but by 20 years-of-age these
differences have disappeared (Walters et al., 2021). Similarly,
Grigg and Grant (2009) found that restored jarrah stands aged
10–13 years only exhibit a growth response to applied fertilizer
when water limitation is temporarily reduced by stand thinning,
a response also observed in unmined forest (Stoneman et al.,
1997; Daws et al., 2021b). This observation is not unique to
jarrah. For example, Campion et al. (2006) demonstrated that
4-year-old Eucalyptus grandis in South Africa was constrained
more by water availability than soil nutrient supply. Hence, like
the tortoise and the hare, unfertilized jarrah stands catch up
eventually– questioning the premise of fertilizing these stands,
particularly since they will not be logged until at least 70 years of
age (Conservation Commission of Western Australia, 2013).
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Discussion

Fertilizer addition may help achieve individual restoration
goals, such as maximizing plant cover, but applying
fertilizer conflicts with returning biodiverse ecosystems
(see Supplementary Figure 1). From a policy perspective
reframing targets away from short-term aspects such as
growth rates, productivity and cover to focus on longer-term
diversity, resilience and community composition may be more
appropriate. Since diversity, resilience and productivity are
linked in natural ecosystems (Isbell et al., 2015), the increased
diversity associated with reducing fertilizer rates may have
wider benefits for ecosystem function.

When assessing restoration success long-term outcomes
matter. In the short-term fertilizer application to restored Jarrah
Forest increases native diversity (by increasing abundance of
short-lived ephemerals), plant growth rates and total cover
(Daws et al., 2013; Tibbett et al., 2020). While over the longer
term, self-sustaining and biodiverse Jarrah Forest ecosystems
have been successfully restored (Koch and Hobbs, 2007) there
can also be negative impacts on soil biogeochemistry and species
composition. Further, any initial growth benefits of applying
P – but not the legacy – disappear over time (Spain et al.,
2018; Daws et al., 2019a, 2021a). In short, increased initial
growth does not mean improved long-term outcomes, not least
by upsetting the balance of competitive interactions between
species. Consequently, there are further improvements that can
be made when pursuing biodiverse outcomes from restoration
in nutrient-impoverished environments.

A common theme from the literature is that while fertilizer
is typically applied to mine restoration, the precise rates applied
are often unclear (Table 1). To understand impacts, it is
necessary to know both fertilizer rates and type (e.g., NPK
versus P-only and formulation e.g., 9.1% P), as these aspects
may affect vegetation reestablishment (Tibbett et al., 2020;
Daws et al., 2021a). While we have focused on impacts of
P- fertilizer, impacts of N and K fertilizers are likely to be
significant in some cases. For example, Tibbett et al. (2020)
reported that NPK fertilizers resulted in higher plant diversity
than using just P-based fertilizers. While the mechanism(s)
behind this response to including N in the fertilizer mix is
unclear, applying N may, at least initially, maintain a N:P ratio
in the soil more akin to reference forest. It is also possible
that including N limits the establishment and competitiveness
of N2 fixing species, since nitrate and ammonium addition
can depress nodule production in Acacia seedlings (e.g.,
A. auriculiformis A. Cunn. ex Benth.; Goi et al., 1992). Notably,
despite containing the same quantity of P as the P only
treatment, NPK fertilizer treatment resulted in significantly
lower soil ammonium concentrations, suggesting an impact on
atmospheric N2-fixation by legumes (Tibbett et al., 2020). The
impact of different fertilizer types on N:P stoichiometry and
ecosystem responses requires further research.

These findings are likely applicable to a broad range of
bauxite mine restoration beyond the Jarrah Forest because
bauxite largely overlaps with nutrient-deficient soils often
in biodiverse environments. Since research on Jarrah Forest
restoration after bauxite mining is more advanced than
restoration after bauxite mining in other regions further studies
of fertilizer impacts on responses in a broader range of plant
community-types are warranted. In a recent study of bauxite
mine restoration in Brazil, Onésimo et al. (2021) ascribed
their relative success, compared with earlier studies in the
region, to not applying fertilizer, although this remains to
be tested experimentally. Mineral sands mining also often
occurs in regions with nutrient-poor soils (Section “Surface
mining often occurs in nutrient-poor, biodiverse landscapes”)
and high plant diversity, and there is emerging evidence that
restoration of these environments may also be sensitive to
P-application. For kwongan restoration after sand mining in
Western Australia, Riviera et al. (2021) showed that P-addition
was the management intervention with the largest impact
on community composition. More research is needed to
understand the generality of these findings.

We propose that P-limitation and moderation of fertilizer-
P inputs are important for restoring naturally P-impoverished
environments. While the majority of available research comes
from the Jarrah Forest of south-western Australia, we view it
as the “canary in the coal mine.” The considerable overlap
worldwide, among areas of high plant diversity, nutrient-
deficient soils and bauxite and mineral sands mining, suggest
these findings will not be unique. Ongoing research from
elsewhere in the world, such as that emerging from Brazil and
South Africa, will be an important test of the generality of the
findings for the Jarrah Forest.
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