2,486 research outputs found

    Phylogeny, biogeography and diversification patterns of side-necked turtles (Testudines: Pleurodira)

    Get PDF
    Pleurodires or side-necked turtles are today restricted to freshwater environments of South America, Africa– Madagascar and Australia, but in the past they were distributed much more broadly, being found also on Eurasia, India and North America, and marine environments. Two hypotheses were proposed to explain this distribution; in the first, vicariance would have shaped the current geographical distribution and, in the second, extinctions constrained a previously widespread distribution. Here, we aim to reconstruct pleurodiran biogeographic history and diversification patterns based on a new phylogenetic hypothesis recovered from the analysis of the largest morphological dataset yet compiled for the lineage, testing which biogeographical process prevailed during its evolutionary history. The resulting topology generally agrees with previous hypotheses of the group and shows that most diversification shifts were related to the exploration of new niches, e.g. littoral or marine radiations. In addition, as other turtles, pleurodires do not seem to have been much affected by either the Cretaceous– Palaeogene or the Eocene–Oligocene mass extinctions. The biogeographic analyses highlight the predominance of both anagenetic and cladogenetic dispersal events and support the importance of transoceanic dispersals as a more common driver of area changes than previously thought, agreeing with previous studies with other non-turtle lineages.Fil: Ferreira, Gabriel S.. Universidade de Sao Paulo; Brasil. Senckenberg Centre For Human Evolution And Palaeoenvironment; Alemania. Universität Tübingen; AlemaniaFil: Bronzati Filho, Mario. Bayerische Staatssammlung für Paläontologie und Geologie; AlemaniaFil: Langer, Max C.. Universidade de Sao Paulo; BrasilFil: Sterli, Juliana. Museo Paleontológico Egidio Feruglio; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Rapid progress on the vertebrate tree of life

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Among the greatest challenges for biology in the 21st century is inference of the tree of life. Interest in, and progress toward, this goal has increased dramatically with the growing availability of molecular sequence data. However, we have very little sense, for any major clade, of how much progress has been made in resolving a full tree of life and the scope of work that remains. A series of challenges stand in the way of completing this task but, at the most basic level, progress is limited by data: a limited fraction of the world's biodiversity has been incorporated into a phylogenetic analysis. More troubling is our poor understanding of what fraction of the tree of life is understood and how quickly research is adding to this knowledge. Here we measure the rate of progress on the tree of life for one clade of particular research interest, the vertebrates.</p> <p>Results</p> <p>Using an automated phylogenetic approach, we analyse all available molecular data for a large sample of vertebrate diversity, comprising nearly 12,000 species and 210,000 sequences. Our results indicate that progress has been rapid, increasing polynomially during the age of molecular systematics. It is also skewed, with birds and mammals receiving the most attention and marine organisms accumulating far fewer data and a slower rate of increase in phylogenetic resolution than terrestrial taxa. We analyse the contributors to this phylogenetic progress and make recommendations for future work.</p> <p>Conclusions</p> <p>Our analyses suggest that a large majority of the vertebrate tree of life will: (1) be resolved within the next few decades; (2) identify specific data collection strategies that may help to spur future progress; and (3) identify branches of the vertebrate tree of life in need of increased research effort.</p

    Target product profiles for protecting against outdoor malaria transmission.

    Get PDF
    BACKGROUND\ud \ud Long-lasting insecticidal nets (LLINs) and indoor residual sprays (IRS) have decimated malaria transmission by killing indoor-feeding mosquitoes. However, complete elimination of malaria transmission with these proven methods is confounded by vectors that evade pesticide contact by feeding outdoors.\ud \ud METHODS\ud \ud For any assumed level of indoor coverage and personal protective efficacy with insecticidal products, process-explicit malaria transmission models suggest that insecticides that repel mosquitoes will achieve less impact upon transmission than those that kill them outright. Here such models are extended to explore how outdoor use of products containing either contact toxins or spatial repellents might augment or attenuate impact of high indoor coverage of LLINs relying primarily upon contact toxicity.\ud \ud RESULTS\ud \ud LLIN impact could be dramatically enhanced by high coverage with spatial repellents conferring near-complete personal protection, but only if combined indoor use of both measures can be avoided where vectors persist that prefer feeding indoors upon humans. While very high levels of coverage and efficacy will be required for spatial repellents to substantially augment the impact of LLINs or IRS, these ambitious targets may well be at least as practically achievable as the lower requirements for equivalent impact using contact insecticides.\ud \ud CONCLUSIONS\ud \ud Vapour-phase repellents may be more acceptable, practical and effective than contact insecticides for preventing outdoor malaria transmission because they need not be applied to skin or clothing and may protect multiple occupants of spaces outside of treatable structures such as nets or houses

    Pharmacokinetics of high-dose oral thiamine hydrochloride in healthy subjects

    Get PDF
    Background: High dose oral thiamine may have a role in treating diabetes, heart failure, and hypermetabolic states. The purpose of this study was to determine the pharmacokinetic profile of oral thiamine hydrochloride at 100 mg, 500 mg and 1500 mg doses in healthy subjects. Methods: This was a randomized, double-blind, single-dose, 4-way crossover study. Pharmacokinetic measures were calculated. Results: The AUC010hrAUC_{0-10 hr} and CmaxC_{max} values increased nonlinearly between 100 mg and 1500 mg. The slope of the AUC010hrAUC_{0-10 hr} vs dose, as well as the CmaxC_{max} vs dose, plots are steepest at the lowest thiamine doses. Conclusion: Our study demonstrates that high blood levels of thiamine can be achieved rapidly with oral thiamine hydrochloride. Thiamine is absorbed by both an active and nonsaturable passive process

    Slepian functions and their use in signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and on the surface of a sphere.Comment: Submitted to the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verla

    Imaging Electronic Correlations in Twisted Bilayer Graphene near the Magic Angle

    Get PDF
    Twisted bilayer graphene with a twist angle of around 1.1{\deg} features a pair of isolated flat electronic bands and forms a strongly correlated electronic platform. Here, we use scanning tunneling microscopy to probe local properties of highly tunable twisted bilayer graphene devices and show that the flat bands strongly deform when aligned with the Fermi level. At half filling of the bands, we observe the development of gaps originating from correlated insulating states. Near charge neutrality, we find a previously unidentified correlated regime featuring a substantially enhanced flat band splitting that we describe within a microscopic model predicting a strong tendency towards nematic ordering. Our results provide insights into symmetry breaking correlation effects and highlight the importance of electronic interactions for all filling factors in twisted bilayer graphene.Comment: Main text 9 pages, 4 figures; Supplementary Information 25 page

    Eliminating Malaria Vectors.

    Get PDF
    Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations

    Accurate Detection of Recombinant Breakpoints in Whole-Genome Alignments

    Get PDF
    We propose a novel method for detecting sites of molecular recombination in multiple alignments. Our approach is a compromise between previous extremes of computationally prohibitive but mathematically rigorous methods and imprecise heuristic methods. Using a combined algorithm for estimating tree structure and hidden Markov model parameters, our program detects changes in phylogenetic tree topology over a multiple sequence alignment. We evaluate our method on benchmark datasets from previous studies on two recombinant pathogens, Neisseria and HIV-1, as well as simulated data. We show that we are not only able to detect recombinant regions of vastly different sizes but also the location of breakpoints with great accuracy. We show that our method does well inferring recombination breakpoints while at the same time maintaining practicality for larger datasets. In all cases, we confirm the breakpoint predictions of previous studies, and in many cases we offer novel predictions
    corecore