2,662 research outputs found
Disruptions of the Ustilago maydis REC2 gene identify a protein domain important in directing recombinational repair of DNA
The REC2 gene of Ustilago maydis encodes a homologue of the Escherichia coli RecA protein and was first identified in a screen for UV-sensitive mutants. The original isolate, rec2-1, was found to be deficient in repair of DNA damage, genetic recombination and meiosis. We report here that the rec2-197 allele, which was constructed by gene disruption, retains some biological activity and is partially dominant with respect to REC2. The basis for the residual activity is probably as a result of expression of a diffusible product from the rec2-197 allele that augments or interferes with REC2 functions. This product appears to be a polypeptide expressed from a remnant of the 5' end of the open reading frame that was not removed in creating the gene disruption. The mutator activity and disturbed meiosis of rec2-197 suggest that the Rec2 protein functions in a process that avoids spontaneous mutation and insures faithful meiotic chromosome segregation. A prediction based on the phenotype of rec2-197 is that Rec2 protein interacts with one or more other proteins in directing these functions. To identify interacting proteins we performed a yeast two-hybrid screen and found Rad51 as a candidate. Rec2-197 and Rad51 appear to interact to a similar degree
Classification of neurological abnormalities in children with congenital melanocytic naevus syndrome identifies magnetic resonance imaging as the best predictor of clinical outcome
Background: The spectrum of central nervous system (CNS) abnormalities described in association with congenital melanocytic naevi (CMN) includes congenital, acquired, melanotic and nonmelanotic pathology. Historically, symptomatic CNS abnormalities were considered to carry a poor prognosis, although studies from large centres have suggested a much wider variation in outcome.
Objectives: To establish whether routine MRI of the CNS is a clinically relevant investigation in children with multiple CMN (more than one at birth), and to subclassify radiological abnormalities.
Methods: Of 376 patients seen between 1991 and 2013, 289 fulfilled our criterion for a single screening CNS MRI, which since 2008 has been more than one CMN at birth, independent of size and site of the largest naevus. Cutaneous phenotyping and radiological variables were combined in a multiple regression model of long-term outcome measures (abnormal neurodevelopment, seizures, requirement for neurosurgery).
Results: Twenty-one per cent of children with multiple CMN had an abnormal MRI. Abnormal MRI was the most significant predictor of all outcome measures. Abnormalities were subclassified into group 1 ‘intraparenchymal melanosis alone’ (n = 28) and group 2 ‘all other pathology’ (n = 18). Group 1 was not associated with malignancy or death during the study period, even when symptomatic with seizures or developmental delay, whereas group 2 showed a much more complex picture, requiring individual assessment.
Conclusions: For screening for congenital neurological lesions a single MRI in multiple CMN is a clinically relevant strategy. Any child with a stepwise change in neurological/developmental symptoms or signs should have an MRI with contrast of the brain and spine to look for new CNS melanoma
Recommended from our members
Protocol for a randomized controlled trial examining multilevel prediction of response to behavioral activation and exposure-based therapy for generalized anxiety disorder.
BACKGROUND:Only 40-60% of patients with generalized anxiety disorder experience long-lasting improvement with gold standard psychosocial interventions. Identifying neurobehavioral factors that predict treatment success might provide specific targets for more individualized interventions, fostering more optimal outcomes and bringing us closer to the goal of "personalized medicine." Research suggests that reward and threat processing (approach/avoidance behavior) and cognitive control may be important for understanding anxiety and comorbid depressive disorders and may have relevance to treatment outcomes. This study was designed to determine whether approach-avoidance behaviors and associated neural responses moderate treatment response to exposure-based versus behavioral activation therapy for generalized anxiety disorder. METHODS/DESIGN:We are conducting a randomized controlled trial involving two 10-week group-based interventions: exposure-based therapy or behavioral activation therapy. These interventions focus on specific and unique aspects of threat and reward processing, respectively. Prior to and after treatment, participants are interviewed and undergo behavioral, biomarker, and neuroimaging assessments, with a focus on approach and avoidance processing and decision-making. Primary analyses will use mixed models to examine whether hypothesized approach, avoidance, and conflict arbitration behaviors and associated neural responses at baseline moderate symptom change with treatment, as assessed using the Generalized Anxiety Disorder-7 item scale. Exploratory analyses will examine additional potential treatment moderators and use data reduction and machine learning methods. DISCUSSION:This protocol provides a framework for how studies may be designed to move the field toward neuroscience-informed and personalized psychosocial treatments. The results of this trial will have implications for approach-avoidance processing in generalized anxiety disorder, relationships between levels of analysis (i.e., behavioral, neural), and predictors of behavioral therapy outcome. TRIAL REGISTRATION:The study was retrospectively registered within 21 days of first participant enrollment in accordance with FDAAA 801 with ClinicalTrials.gov, NCT02807480. Registered on June 21, 2016, before results
Sexuality and Affection among Elderly German Men and Women in Long-Term Relationships: Results of a Prospective Population-Based Study
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The study was funded by the German Federal Ministry for Families, Senior Citizens, Women and Youth (AZ 314-1722-102/16; AZ 301-1720-295/2), the Ministry for Science, Research and Art Baden-Württemberg, and the University of Rostock (FORUN 989020; 889048)
Cocaine-Dependent Adults and Recreational Cocaine Users Are More Likely Than Controls to Choose Immediate Unsafe Sex Over Delayed Safer Sex
Cocaine users have a higher incidence of risky sexual behavior and HIV infection than non-users.
Our aim was to measure whether safer-sex discount rates, a measure of the likelihood of having
immediate unprotected sex versus waiting to have safer sex, differed between controls and cocaine
users of varying severity. Of the 162 individuals included in the primary data analyses, 69 met
DSM-IV-TR criteria for cocaine dependence, 29 were recreational cocaine users who did not meet
dependence, and 64 were controls. Participants completed the sexual delay discounting task,
which measures one’s likelihood of using a condom when immediately available and how that
likelihood decreases as a function of delay to condom availability with regard to four images
chosen by the participants of hypothetical sexual partners differing in perceived desirability and
likelihood of having a sexually-transmitted infection. When a condom was immediately available,
stated likelihood of condom use sometimes differed between cocaine users and controls, which
depended on the image condition. Even after controlling for rates of condom use when
immediately available, the Cocaine Dependent and Recreational Users groups were more sensitive
to delay to condom availability than controls. Safer-sex discount rates were also related to
intelligence scores. The sexual discounting task identifies delay as a key variable that impacts the
likelihood of using a condom among these groups and suggests that HIV-prevention efforts may be
differentially effective based on an individual’s safer-sex discount rate
Mapping photonic entanglement into and out of a quantum memory
Recent developments of quantum information science critically rely on
entanglement, an intriguing aspect of quantum mechanics where parts of a
composite system can exhibit correlations stronger than any classical
counterpart. In particular, scalable quantum networks require capabilities to
create, store, and distribute entanglement among distant matter nodes via
photonic channels. Atomic ensembles can play the role of such nodes. So far, in
the photon counting regime, heralded entanglement between atomic ensembles has
been successfully demonstrated via probabilistic protocols. However, an
inherent drawback of this approach is the compromise between the amount of
entanglement and its preparation probability, leading intrinsically to low
count rate for high entanglement. Here we report a protocol where entanglement
between two atomic ensembles is created by coherent mapping of an entangled
state of light. By splitting a single-photon and subsequent state transfer, we
separate the generation of entanglement and its storage. After a programmable
delay, the stored entanglement is mapped back into photonic modes with overall
efficiency of 17 %. Improvements of single-photon sources together with our
protocol will enable "on demand" entanglement of atomic ensembles, a powerful
resource for quantum networking.Comment: 7 pages, and 3 figure
Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution
A birth-death process is a continuous-time Markov chain that counts the
number of particles in a system over time. In the general process with
current particles, a new particle is born with instantaneous rate
and a particle dies with instantaneous rate . Currently no robust and
efficient method exists to evaluate the finite-time transition probabilities in
a general birth-death process with arbitrary birth and death rates. In this
paper, we first revisit the theory of continued fractions to obtain expressions
for the Laplace transforms of these transition probabilities and make explicit
an important derivation connecting transition probabilities and continued
fractions. We then develop an efficient algorithm for computing these
probabilities that analyzes the error associated with approximations in the
method. We demonstrate that this error-controlled method agrees with known
solutions and outperforms previous approaches to computing these probabilities.
Finally, we apply our novel method to several important problems in ecology,
evolution, and genetics
- …