3,227 research outputs found
Collisional Energy Loss of Fast Charged Particles in Relativistic Plasmas
Following an argument by Kirzhnits we rederive an exact expression for the
energy loss of a fast charged particle in a relativistic plasma using the
quantum field theoretical language. We compare this result to perturbative
calculations of the collisional energy loss of an energetic electron or muon in
an electron-positron plasma and of an energetic parton in the quark-gluon
plasma.Comment: 9 pages, LATEX, 2 PostScript figure
Damping Rate of a Yukawa Fermion at Finite Temperature
The damping of a massless fermion coupled to a massless scalar particle at
finite temperature is considered using the Braaten-Pisarski resummation
technique. First the hard thermal loop diagrams of this theory are extracted
and effective Green's functions are constructed. Using these effective Green's
functions the damping rate of a soft Yukawa fermion is calculated. This rate
provides the most simple example for the damping of a soft particle. To leading
order it is proportional to , whereas the one of a hard fermion is of
higher order.Comment: 5 pages, REVTEX, postscript figures appended, UGI-94-0
Damping Rate of a Hard Photon in a Relativistic Plasma
The damping rate of a hard photon in a hot relativistic QED and QCD plasma is
calculated using the resummation technique by Braaten and Pisarski.Comment: 4 pages, REVTeX, 2 figures (not included), UGI-MT-94-0
Large harmonic softening of the phonon density of states of uranium
Phonon density-of-states curves were obtained from inelastic neutron scattering spectra from the three crystalline phases of uranium at temperatures from 50 to 1213 K. The alpha -phase showed an unusually large thermal softening of phonon frequencies. Analysis of the vibrational power spectrum showed that this phonon softening originates with the softening of a harmonic solid, as opposed to vibrations in anharmonic potentials. It follows that thermal excitations of electronic states are more significant thermodynamically than are the classical volume effects. For the alpha-beta and beta-gamma phase transitions, vibrational and electronic entropies were comparable
The Quark-Gluon-Plasma Liquid
The quark-gluon plasma close to the critical temperature is a strongly
interacting system. Using strongly coupled, classical, non-relativistic plasmas
as an analogy, we argue that the quark-gluon plasma is in the liquid phase.
This allows to understand experimental observations in ultrarelativistic
heavy-ion collisions and to interpret lattice QCD results. It also supports the
indications of the presence of a strongly coupled QGP in ultrarelativistic
heavy-ion collisions.Comment: 8 pages, 2 figures, final version, to bepublished in J. Phys.
Decay of a Yukawa fermion at finite temperature and applications to leptogenesis
We calculate the decay rate of a Yukawa fermion in a thermal bath using
finite temperature cutting rules and effective Green's functions according to
the hard thermal loop resummation technique. We apply this result to the decay
of a heavy Majorana neutrino in leptogenesis. Compared to the usual approach
where thermal masses are inserted into the kinematics of final states, we find
that deviations arise through two different leptonic dispersion relations. The
decay rate differs from the usual approach by more than one order of magnitude
in the temperature range which is interesting for the weak washout regime. We
discuss how to arrive at consistent finite temperature treatments of
leptogenesis.Comment: 16 pages, 5 figure
Microstructural strain energy of α-uranium determined by calorimetry and neutron diffractometry
The microstructural contribution to the heat capacity of α-uranium was determined by measuring the heat-capacity difference between polycrystalline and single-crystal samples from 77 to 320 K. When cooled to 77 K and then heated to about 280 K, the uranium microstructure released (3±1) J/mol of strain energy. On further heating to 300 K, the microstructure absorbed energy as it began to redevelop microstrains. Anisotropic strain-broadening parameters were extracted from neutron-diffraction measurements on polycrystals. Combining the strain-broadening parameters with anisotropic elastic constants from the literature, the microstructural strain energy is predicted in the two limiting cases of statistically isotropic stress and statistically isotropic strain. The result calculated in the limit of statistically isotropic stress was (3.7±0.5) J/mol K at 77 K and (1±0.5) J/mol at room temperature. In the limit of statistically isotropic strain, the values were (7.8±0.5) J/mol K at 77 K and (4.5±0.5) J/mol at room temperature. In both cases the changes in the microstructural strain energy showed good agreement with the calorimetry
Out of equilibrium quantum field dynamics of an initial thermal state after a change in the external field
The effects of the initial temperature in the out of equilibrium quantum
field dynamics in the presence of an homogeneous external field are
investigated. We consider an initial thermal state of temperature T for a
constant external field J. A subsequent sign flip of the external field, J to
-J, gives rise to an out of equilibrium nonperturbative quantum field dynamics.
The dynamics is studied here for the symmetry broken lambda(Phi^2)^2 scalar N
component field theory in the large N limit. We find a dynamical effective
potential for the expectation value that helps to understand the dynamics. The
dynamics presents two regimes defined by the presence or absence of a temporal
trapping close to the metastable equilibrium position of the potential. The two
regimes are separated by a critical value of the external field that depends on
the initial temperature. The temporal trapping is shorter for larger initial
temperatures or larger external fields. Parametric resonances and spinodal
instabilities amplify the quantum fluctuations in the field components
transverse to the external field. When there is a temporal trapping this is the
main mechanism that allows the system to escape from the metastable state for
large N. Subsequently backreaction stops the growth of the quantum fluctuations
and the system enters a quasiperiodic regime.Comment: LaTeX, 19 pages, 12 .eps figures, improved version to appear in Phys
Rev
Non-Perturbative Dilepton Production from a Quark-Gluon Plasma
The dilepton production rate from the quark-gluon plasma is calculated from
the imaginary part of the photon self energy using a quark propagator that
contains the gluon condensate. The low mass dilepton rate obtained in this way
exhibits interesting structures (peaks and gaps), which might be observable at
RHIC and LHC.Comment: 16 pages, REVTEX, 8 PostScript figure
Document image archive transfer from DOS to UNIX
An R&D division of the National Library of Medicine has developed a prototype system for automated document image delivery as an adjunct to the labor-intensive manual interlibrary loan service of the library. The document image archive is implemented by a PC controlled bank of optical disk drives which use 12 inch WORM platters containing bitmapped images of over 200,000 pages of medical journals. Following three years of routine operation which resulted in serving patrons with articles both by mail and fax, an effort is underway to relocate the storage environment from the DOS-based system to a UNIX-based jukebox whose magneto-optical erasable 5 1/4 inch platters hold the images. This paper describes the deficiencies of the current storage system, the design issues of modifying several modules in the system, the alternatives proposed and the tradeoffs involved
- …