168 research outputs found
Recommended from our members
Modelling of the natural chlorine cycling in a coniferous stand: implications for chlorine-36 behaviour in a contaminated forest environment
Considered as one of the most available radionuclide in soileplant system, 36Cl is of potential concern for long-term management of radioactive wastes, due to its high mobility and its long half-life. To evaluate the risk of dispersion and accumulation of 36Cl in the biosphere as a consequence of a potential contamination, there is a need for an appropriate understanding of the chlorine cycling dynamics in the ecosystems. To date, a small number of studies have investigated the chlorine transfer in the ecosystem including the transformation of chloride to organic chlorine but, to our knowledge, none have modelled this cycle. In this study, a model involving inorganic as well as organic pools in soils has been developed and parameterised to describe the biogeochemical fate of chlorine in a pine forest. The model has been evaluated for stable chlorine by performing a range of sensitivity analyses and by comparing the simulated to the observed values. Finally a range of contamination scenarios, which differ in terms of external supply, exposure time and source, has been simulated to estimate the possible accumulation of 36Cl within the different compartments of the coniferous stand. The sensitivity study supports the relevancy of the model and its compartments, and has highlighted the chlorine transfers affecting the most the residence time of chlorine in the stand. Compared to observations, the model simulates realistic values for the chlorine content within the different forest compartments. For both atmospheric and underground contamination scenarios most of the chlorine can be found in its organic form in the soil. However, in case of an underground source, about two times less chlorine accumulates in the system and proportionally more chlorine leaves the system through drainage than through volatilisation
Experimental Models of Dermatophytosis
peer reviewedDermatophytosis is a superficial fungal infection of the keratinized structures of
the host. Since the last decade, this mycosis became an important health concern
due to an increasing prevalence and to the limited number and efficacy of
available treatments. Several experimental models have then been developed in
order to improve knowledge about this infection and to design new therapeutic
strategies. This chapter presents the variety of dermatophytosis experimental
models and their contribution in the understanding of mechanisms used by
dermatophytes to adhere and to invade the host tissue. Their support to study
the establishment of effective antifungal defenses by the host is also summarized.
The usefulness of these models for testing the efficacy of antifungal compounds is
finally discussed
Iodine budget in forest soils: Influence of environmental conditions and soil physicochemical properties
International audienceDue to its longevity, radioisotope 129I is a health concern following potential releases in the environment which raises questions about residence and exposure times relevant for risk assessments. We deter¬mined 127I concentrations (as a surrogate for 129I) in a series of French forest soils (i.e. litters, humus and mineral soils) under different vegetation and climate conditions in order to identify the major processes affecting its accumulation and persistence in the soil column. The input fluxes linked to rainfall, throughfall and litterfall were also characterized. Main results obtained showed that: (i) rainfall iodine concentrations probably influenced those of litterfall through absorption by leaves/needles returning to the ground; (ii) throughfall was the major iodine input to soils (mean = 83%), compared to litterfall (mean = 17%); (iii) humus represented a temporary storage of iodine from atmospheric and biomass deposits; (iv) iodine concentrations in soils depended on both the iodine inputs and the soil's ability to retain iodine due to its organic matter, total iron and aluminium concentrations; (v) these soil properties were the main factors influencing the accumulation of iodine in the soil column, resulting in residence times of 419-1756 years; and (vi) the leaching of iodine-containing organic matter dissolved in soil solution may be an important source of labile organic iodine for groundwater and streams
Star formation triggered by non-head-on cloud-cloud collisions, and clouds with pre-collision sub-structure
In an earlier paper, we used smoothed particle hydrodynamics (SPH) simulations to explore star formation triggered by head-on collisions between uniform-density 500 M clouds, and showed that there is a critical collision velocity, vCRIT. At collision velocities below vCRIT, a hub-and-spoke mode operates and delivers a monolithic cluster with a broad mass function, including massive stars (M 10 M) formed by competitive accretion. At collision velocities above vCRIT, a spider’s-web mode operates and delivers a loose distribution of small sub-clusters with a relatively narrow mass function and no massive stars. Here we show that,if the head-on assumption is relaxed, vCRIT is reduced. However, if the uniform-density assumption is also relaxed, the collision velocity becomes somewhat less critical: a low collision velocity is still needed to produce a global hub-and-spoke system and a monolithic cluster, but, even at high velocities, large cores – capable of supporting competitive accretion and thereby producing massive stars – can be produced. We conclude that cloud–cloud collisions may be a viable mechanism for forming massive stars – and we show that this might even be the major channel for forming massive stars in the Galaxy
Age at onset as stratifier in idiopathic Parkinson’s disease – effect of ageing and polygenic risk score on clinical phenotypes
Several phenotypic differences observed in Parkinson’s disease (PD) patients have been linked to age at onset (AAO). We endeavoured to find out whether these differences are due to the ageing process itself by using a combined dataset of idiopathic PD (n = 430) and healthy controls (HC; n = 556) excluding carriers of known PD-linked genetic mutations in both groups. We found several significant effects of AAO on motor and non-motor symptoms in PD, but when comparing the effects of age on these symptoms with HC (using age at assessment, AAA), only positive associations of AAA with burden of motor symptoms and cognitive impairment were significantly different between PD vs HC. Furthermore, we explored a potential effect of polygenic risk score (PRS) on clinical phenotype and identified a significant inverse correlation of AAO and PRS in PD. No significant association between PRS and severity of clinical symptoms was found. We conclude that the observed non-motor phenotypic differences in PD based on AAO are largely driven by the ageing process itself and not by a specific profile of neurodegeneration linked to AAO in the idiopathic PD patients
Déontologie générale
Deuxième édition 1983-19841ère lic. Sc. hosp. 1ère lic. Sc. hosp. à horaire décalé (CUNIC)info:eu-repo/semantics/published
Déontologie générale
Première édition 1980-19811e lic. Sc. hosp. 2e lic. Sc. hosp. (1980-1981)info:eu-repo/semantics/published
- …