317 research outputs found

    Non-LTE Abundances and Consequences for the Evolution of the alpha elements in the Galaxy

    Full text link
    Abundances of alpha-elements such as Ca and Mg in disk and halo stars are usually derived from equivalent widths lines measured on high resolution spectra, and assuming Local Thermodynamic Equilibrium (LTE) . In this paper, we present non-LTE differential abundances derived by computing the statistical equilibrium of CaI and MgI atoms, using high resolution equivalent widths available in the literature for 252 dwarf to subgiant stars. These non-LTE abundances combined with recent determination of non-LTE abundances of iron, seem to remove the dispersion of the [Ca/Fe] and [Mg/Fe] ratios in the galactic halo and disk phases, revealing new and surprising structures. These results have important consequences for chemical evolution models of the Galaxy. In addition, non-LTE abundance ratios for stars belonging to the M92 cluster apparently have the same behavior. More high resolution observations, mainly of globular clusters, are urgently needed to confirm our results.Comment: 15 pages, 3 tables, 7 figure

    Asteroseismology and calibration of alpha Cen binary system

    Full text link
    Using the oscillation frequencies of alpha Cen A recently discovered by Bouchy & Carrier, the available astrometric, photometric and spectroscopic data, we tried to improve the calibration of the visual binary system alpha Cen. With the revisited masses of Pourbaix et al. (2002) we do not succeed to obtain a solution satisfying all the seismic observational constraints. Relaxing the constraints on the masses, we have found an age t_alpha Cen=4850+-500 Myr, an initial helium mass fraction Y_i = 0.300+-0.008, and an initial metallicity (Z/X)_i=0.0459+-0.0019, with M_A=1.100+-0.006M_o and M_B=0.907+-0.006M_o for alpha Cen A&B.Comment: accepted for publication as a letter in A&

    Stellar Iron Abundances: non-LTE Effects

    Get PDF
    We report new statistical equilibrium calculations for Fe I and Fe II in the atmosphere of Late-Type stars. We used atomic models for Fe I and Fe II having respectively 256 and 190 levels, as well as 2117 and 3443 radiative transitions. Photoionization cross-sections are from the Iron Project. These atomic models were used to investigate non-LTE effects in iron abundances of Late-Type stars with different atmospheric parameters. We found that most Fe I lines in metal-poor stars are formed in conditions far from LTE. We derived metallicity corrections of about 0.3 dex with respect to LTE values, for the case of stars with [Fe/H] ~ -3.0. Fe II is found not to be affected by significant non-LTE effects. The main non-LTE effect invoked in the case of Fe I is overionization by ultraviolet radiation, thus classical ionization equilibrium is far to be satisfied. An important consequence is that surface gravities derived by LTE analysis are in error and should be corrected before final abundances corrections. This apparently solves the observed discrepancy between spectroscopic surface gravities derived by LTE analyses and those derived from Hipparcos parallaxes. A table of non-LTE [Fe/H] and log g values for a sample of metal-poor late-type stars is given.Comment: 22 pages, 9 figures, 1 table, ApJ style, accepte

    VINCI / VLTI observations of Main Sequence stars

    Full text link
    Main Sequence (MS) stars are by far the most numerous class in the Universe. They are often somewhat neglected as they are relatively quiet objects (but exceptions exist), though they bear testimony of the past and future of our Sun. An important characteristic of the MS stars, particularly the solar-type ones, is that they host the large majority of the known extrasolar planets. Moreover, at the bottom of the MS, the red M dwarfs pave the way to understanding the physics of brown dwarfs and giant planets. We have measured very precise angular diameters from recent VINCI/VLTI interferometric observations of a number of MS stars in the K band, with spectral types between A1V and M5.5V. They already cover a wide range of effective temperatures and radii. Combined with precise Hipparcos parallaxes, photometry, spectroscopy as well as the asteroseismic information available for some of these stars, the angular diameters put strong constraints on the detailed models of these stars, and therefore on the physical processes at play.Comment: 5 pages, 3 figures. To appear in the Proceedings of IAU Symposium 219, "Stars as Suns", Editors A. Benz & A. Dupree, Astronomical Society of the Pacifi

    Abundances in Stars from the Red Giant Branch Tip to Near the Main Sequence Turn Off in M71: III. Abundance Ratios

    Get PDF
    We present abundance ratios for 23 elements with respect to Fe in a sample of stars with a wide range in luminosity, from luminous giants to stars near the turnoff, in the globular cluster M71. The analyzed spectra, obtained with HIRES at the Keck Observatory, are of high dispersion (R=35,000). We find that the neutron capture, the iron peak and the alpha-element abundance ratios show no trend with Teff, and low scatter around the mean between the top of the RGB and near the main sequence turnoff. The alpha-elements Mg, Ca, Si and Ti are overabundant relative to Fe. The anti-correlation between O and Na abundances, observed in other metal poor globular clusters, is detected in our sample and extends to the main sequence. A statistically significant correlation between Al and Na abundances is observed among the M71 stars in our sample, extending to Mv = +1.8, fainter than the luminosity of the RGB bump in M5. Lithium is varying, as expected, and Zr may be varying from star to star as well. M71 appears to have abundance ratios very similar to M5 whose bright giants were studied by Ivans et al. (2001), but seems to have a smaller amplitude of star-to-star variations at a given luminosity, as might be expected from its higher metallicity. The results of our abundance analysis of 25 stars in M71 provide sufficient evidence of abundance variations at unexpectedly low luminosities to rule out the mixing scenario. Either alone or, even more powerfully, combined with other recent studies of C and N abundances in M71 stars, the existence of such abundance variations cannot be reproduced within the context of our current understanding of stellar evolution.Comment: AJ, in press (June 2002), 18 figure

    Abundance Analysis of Planetary Host Stars I. Differential Iron Abundances

    Full text link
    We present atmospheric parameters and iron abundances derived from high-resolution spectra for three samples of dwarf stars: stars which are known to host close-in giant planets (CGP), stars for which radial velocity data exclude the presence of a close-in giant planetary companion (no-CGP), as well as a random sample of dwarfs with a spectral type and magnitude distribution similar to that of the planetary host stars (control). All stars have been observed with the same instrument and have been analyzed using the same model atmospheres, atomic data and equivalent width modeling program. Abundances have been derived differentially to the Sun, using a solar spectrum obtained with Callisto as the reflector with the same instrumentation. We find that the iron abundances of CGP dwarfs are on average by 0.22 dex greater than that of no-CGP dwarfs. The iron abundance distributions of both the CGP and no-CGP dwarfs are different than that of the control dwarfs, while the combined iron abundances have a distribution which is very similar to that of the control dwarfs. All four samples (CGP, no-CGP, combined, control) have different effective temperature distributions. We show that metal enrichment occurs only for CGP dwarfs with temperatures just below solar and approximately 300 K higher than solar, whereas the abundance difference is insignificant at Teff around 6000 K.Comment: 52 pages (aastex 11pt, preprint style), including 17 figures and 13 tables; accepted for publication in AJ (scheduled for the October 2003 issue

    Abundances in Stars from the Red Giant Branch Tip to the Near Main Sequence in M71: II. Iron Abundance

    Full text link
    We present [Ffe/H] abundance results that involve a sample of stars with a wide range in luminosity from luminous giants to stars near the turnoff in a globular cluster. Our sample of 25 stars in M71 includes 10 giant stars more luminous than the RHB, 3 horizontal branch stars, 9 giant stars less luminous than the RHB, and 3 stars near the turnoff. We analyzed both Fe I and Fe II lines in high dispersion spectra observed with HIRES at the W. M. Keck Observatory. We find that the [Fe/H] abundances from both Fe I and Fe II lines agree with each other and with earlier determinations. Also the [Fe/H] obtained from Fe I and Fe II lines is constant within the rather small uncertainties for this group of stars over the full range in Teff and luminosity, suggesting that NLTE effects are negligible in our iron abundance determination. In this globular cluster, there is no difference among the mean [Fe/H] of giant stars located at or above the RHB, RHB stars, giant stars located below the RHB and stars near the turnoff.Comment: Minor changes to conform to version accepted for publication, with several new figures (Paper 2 of a pair

    Congenital tibial deficiencies: Treatment using the Ilizarov's external fixator

    Get PDF
    SummaryIntroductionCongenital longitudinal deficiency of the tibia is a rare and often syndromic anomaly. Amputation is usually the preferred treatment option in complete absence of the tibia; however, a conservative management might be implemented in partial forms or in case of amputation refusal. Our experience with the Ilizarov fixator, convinced us this device was the best suited for progressive correction of lower limbs length discrepancies and articular or bone angular limb deformities (ALD). The aim of this study is to highlight the interest of the Ilizarov fixator in the multistage conservative treatment of congenital tibial deficiencies.Material and methodsA retrospective study was conducted in nine patients suffering from Type I or II congenital tibial deficiencies (Jones) and sequentially managed using the Ilizarov technique. The functional outcome after treatment completion was then clinically assessed.ResultsThe different stages of correction were recorded for each individual patient. Patients were assessed at a mean follow-up of 18,3 years (4–32 years). The mean maximum knee flexion was 35° (0°–90°) in type I deficiencies and 118° (90°–140°) in type II deficiencies. One patient underwent amputation and a bilateral knee arthrodesis was performed in another case.DiscussionFew series in the literature report a comparable length of follow-up period in the conservative management of severe congenital tibial deficiencies. In our study, the Ilizarov fixator provided satisfactory progressive corrections of severe congenital tibial deficiencies.Level of EvidenceLevel IV therapeutic retrospective study
    • …
    corecore