41 research outputs found

    Multisite reliability of MR-based functional connectivity

    Get PDF
    Recent years have witnessed an increasing number of multisite MRI functional connectivity (fcMRI) studies. While multisite studies are an efficient way to speed up data collection and increase sample sizes, especially for rare clinical populations, any effects of site or MRI scanner could ultimately limit power and weaken results. Little data exists on the stability of functional connectivity measurements across sites and sessions. In this study, we assess the influence of site and session on resting state functional connectivity measurements in a healthy cohort of traveling subjects (8 subjects scanned twice at each of 8 sites) scanned as part of the North American Prodrome Longitudinal Study (NAPLS). Reliability was investigated in three types of connectivity analyses: (1) seed-based connectivity with posterior cingulate cortex (PCC), right motor cortex (RMC), and left thalamus (LT) as seeds; (2) the intrinsic connectivity distribution (ICD), a voxel-wise connectivity measure; and (3) matrix connectivity, a whole-brain, atlas-based approach assessing connectivity between nodes. Contributions to variability in connectivity due to subject, site, and day-of-scan were quantified and used to assess between-session (test-retest) reliability in accordance with Generalizability Theory. Overall, no major site, scanner manufacturer, or day-of-scan effects were found for the univariate connectivity analyses; instead, subject effects dominated relative to the other measured factors. However, summaries of voxel-wise connectivity were found to be sensitive to site and scanner manufacturer effects. For all connectivity measures, although subject variance was three times the site variance, the residual represented 60ā€“80% of the variance, indicating that connectivity differed greatly from scan to scan independent of any of the measured factors (i.e., subject, site, and day-of-scan). Thus, for a single 5 min scan, reliability across connectivity measures was poor (ICC=0.07ā€“0.17), but increases with increasing scan duration (ICC=0.21ā€“0.36 at 25 min). The limited effects of site and scanner manufacturer support the use of multisite studies, such as NAPLS, as a viable means of collecting data on rare populations and increasing power in univariate functional connectivity studies. However, the results indicate that aggregation of fcMRI data across longer scan durations is necessary to increase the reliability of connectivity estimates at the single-subject level

    Reliability of functional magnetic resonance imaging activation during working memory in a multi-site study: Analysis from the North American Prodrome Longitudinal Study

    Get PDF
    Multi-site neuroimaging studies offer an efficient means to study brain functioning in large samples of individuals with rare conditions; however, they present new challenges given that aggregating data across sites introduces additional variability into measures of interest. Assessing the reliability of brain activation across study sites and comparing statistical methods for pooling functional data is critical to ensuring the validity of aggregating data across sites. The current study used two samples of healthy individuals to assess the feasibility and reliability of aggregating multi-site functional magnetic resonance imaging (fMRI) data from a Sternberg-style verbal working memory task. Participants were recruited as part of the North American Prodrome Longitudinal Study (NAPLS), which comprises eight fMRI scanning sites across the United States and Canada. In the first study sample (n = 8), one participant from each home site traveled to each of the sites and was scanned while completing the task on two consecutive days. Reliability was examined using generalizability theory. Results indicated that blood oxygen level-dependent (BOLD) signal was reproducible across sites and was highly reliable, or generalizable, across scanning sites and testing days for core working memory ROIs (generalizability ICCs = 0.81 for left dorsolateral prefrontal cortex, 0.95 for left superior parietal cortex). In the second study sample (n = 154), two statistical methods for aggregating fMRI data across sites for all healthy individuals recruited as control participants in the NAPLS study were compared. Control participants were scanned on one occasion at the site from which they were recruited. Results from the image-based meta-analysis (IBMA) method and mixed effects model with site covariance method both showed robust activation in expected regions (i.e. dorsolateral prefrontal cortex, anterior cingulate cortex, supplementary motor cortex, superior parietal cortex, inferior temporal cortex, cerebellum, thalamus, basal ganglia). Quantification of the similarity of group maps from these methods confirmed a very high (96%) degree of spatial overlap in results. Thus, brain activation during working memory function was reliable across the NAPLS sites and both the IBMA and mixed effects model with site covariance methods appear to be valid approaches for aggregating data across sites. These findings indicate that multi-site functional neuroimaging can offer a reliable means to increase power and generalizability of results when investigating brain function in rare populations and support the multi-site investigation of working memory function in the NAPLS study, in particular

    Reliability of an fMRI paradigm for emotional processing in a multisite longitudinal study

    Get PDF
    Multisite neuroimaging studies can facilitate the investigation of brain-related changes in many contexts, including patient groups that are relatively rare in the general population. Though multisite studies have characterized the reliability of brain activation during working memory and motor functional magnetic resonance imaging tasks, emotion processing tasks, pertinent to many clinical populations, remain less explored. A traveling participants study was conducted with eight healthy volunteers scanned twice on consecutive days at each of the eight North American Longitudinal Prodrome Study sites. Tests derived from generalizability theory showed excellent reliability in the amygdala ( EĻ2 = 0.82), inferior frontal gyrus (IFG; EĻ2 = 0.83), anterior cingulate cortex (ACC; EĻ2 = 0.76), insula ( EĻ2 = 0.85), and fusiform gyrus ( EĻ2 = 0.91) for maximum activation and fair to excellent reliability in the amygdala ( EĻ2 = 0.44), IFG ( EĻ2 = 0.48), ACC ( EĻ2 = 0.55), insula ( EĻ2 = 0.42), and fusiform gyrus ( EĻ2 = 0.83) for mean activation across sites and test days. For the amygdala, habituation ( EĻ2 = 0.71) was more stable than mean activation. In a second investigation, data from 111 healthy individuals across sites were aggregated in a voxelwise, quantitative meta-analysis. When compared with a mixed effects model controlling for site, both approaches identified robust activation in regions consistent with expected results based on prior single-site research. Overall, regions central to emotion processing showed strong reliability in the traveling participants study and robust activation in the aggregation study. These results support the reliability of blood oxygen level-dependent signal in emotion processing areas across different sites and scanners and may inform future efforts to increase efficiency and enhance knowledge of rare conditions in the population through multisite neuroimaging paradigms

    Reliability of neuroanatomical measurements in a multi-site longitudinal study of youth at risk for psychosis

    Get PDF
    Multi-site longitudinal neuroimaging designs are used to identify differential brain structural change associated with onset or progression of disease. The reliability of neuroanatomical measurements over time and across sites is a crucial aspect of power in such studies. Prior work has found that while within-site reliabilities of neuroanatomical measurements are excellent, between-site reliability is generally more modest. Factors that may increase between-site reliability include standardization of scanner platform and sequence parameters and correction for between-scanner variations in gradient nonlinearities. Factors that may improve both between- and within-site reliability include use of registration algorithms that account for individual differences in cortical patterning and shape. In this study 8 healthy volunteers were scanned twice on successive days at 8 sites participating in the North American Prodrome Longitudinal Study (NAPLS). All sites employed 3 Tesla scanners and standardized acquisition parameters. Site accounted for 2 to 30% of the total variance in neuroanatomical measurements. However, site-related variations were trivial (<1%) among sites using the same scanner model and 12-channel coil or when correcting for between-scanner differences in gradient nonlinearity and scaling. Adjusting for individual differences in sulcal-gyral geometries yielded measurements with greater reliabilities than those obtained using an automated approach. Neuroimaging can be performed across multiple sites at the same level of reliability as at a single site, achieving within- and between-site reliabilities of 0.95 or greater for gray matter density in the majority of voxels in the prefrontal and temporal cortical surfaces as well as for the volumes of most subcortical structures

    Alterations of lateral temporal cortical gray matter and facial memory as vulnerability indicators for schizophrenia: An MRI study in youth at familial high-risk for schizophrenia

    No full text
    BackgroundStructural alterations of the lateral temporal cortex (LTC) in association with memory impairments have been reported in schizophrenia. This study investigated whether alterations of LTC structure were linked with impaired facial and/or verbal memory in young first-degree relatives of people with schizophrenia and, thus, may be indicators of vulnerability to the illness.MethodsSubjects included 27 non-psychotic, first-degree relatives of schizophrenia patients, and 48 healthy controls, between the ages of 13 and 28. Participants underwent high-resolution magnetic resonance imaging (MRI) at 1.5Tesla. The LTC was parcellated into superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, and temporal pole. Total cerebral and LTC volumes were measured using semi-automated morphometry. The Wechsler Memory Scale - Third Edition and the Children's Memory Scale - Third Edition assessed facial and verbal memory. General linear models tested for associations among LTC subregion volumes, familial risk and memory.ResultsCompared with controls, relatives had significantly smaller bilateral middle temporal gyri. Moreover, right middle temporal gyral volume showed a significant positive association with delayed facial memory in relatives.ConclusionThese results support the hypothesis that smaller middle temporal gyri are related to the genetic liability to schizophrenia and may be linked with reduced facial memory in persons at genetic risk for the illness. The findings add to the growing evidence that children at risk for schizophrenia on the basis of positive family history have cortical and subcortical structural brain abnormalities well before psychotic illness occurs

    Altered resting-state functional connectivity in young children at familial high risk for psychotic illness: A preliminary study

    No full text
    Ā© 2019 Elsevier B.V. Multiple lines of evidence suggest that illness development in schizophrenia and other psychotic disorders predates the first psychotic episode by many years. In this study, we examined a sample of 15 pre-adolescent children, ages 7 through 12 years, who are at familial high-risk (FHR) because they have a parent or sibling with a history of schizophrenia or related psychotic disorder. Using multi-voxel pattern analysis (MVPA), a data-driven fMRI analysis, we assessed whole-brain differences in functional connectivity in the FHR sample as compared to an age- and sex-matched control (CON) group of 15 children without a family history of psychosis. MVPA analysis yielded a single cluster in right posterior superior temporal gyrus (pSTG/BA 22) showing significant group-differences in functional connectivity. Post-hoc characterization of this cluster through seed-to-voxel analysis revealed mostly reduced functional connectivity of the pSTG seed to a set of language and default mode network (DMN) associated brain regions including Heschl's gyrus, inferior temporal gyrus extending into fusiform gyrus, (para)hippocampus, thalamus, and a cerebellar cluster encompassing mainly Crus I/II. A height-threshold of whole-brain p < .001 (two-sided), and FDR-corrected cluster-threshold of p < .05 (non-parametric statistics) was used for post-hoc characterization. These findings suggest that abnormalities in functional communication in a network encompassing right STG and associated brain regions are present before adolescence in at-risk children and may be a risk marker for psychosis. Subsequent changes in this functional network across development may contribute to either disease manifestation or resilience in children with a familial vulnerability for psychosis

    Hyperactivation of Posterior Default Mode Network During Self-Referential Processing in Children at Familial High-Risk for Psychosis

    No full text
    Patients with schizophrenia spectrum disorders show disturbances in self-referential processing and associated neural circuits including the default mode network (DMN). These disturbances may precede the onset of psychosis and may underlie early social and emotional problems. In this study, we examined self-referential processing in a group of children (7ā€“12 years) at familial high risk (FHR) for psychosis (N = 17), compared to an age and sex-matched group of healthy control (HC) children (N = 20). The participants were presented with a list of adjectives and asked to indicate whether or not the adjectives described them (self-reference condition) and whether the adjectives described a good or bad trait (semantic condition). Three participants were excluded due to chance-level performance on the semantic task, leaving N = 15 FHR and N = 19 HC for final analysis. Functional MRI (fMRI) was used to measure brain activation during self-referential vs. semantic processing. Internalizing and externalizing problems were assessed with the Child Behavior Checklist (CBCL). Evaluating main effects of task (self > semantic) showed activation of medial prefrontal cortex in HC and precuneus/posterior cingulate cortex (PCC) in FHR. Group-comparison yielded significant results for the FHR > HC contrast, showing two clusters of hyperactivation in precuneus/ PCC (p = 0.004) and anterior cerebellum / temporo-occipital cortex (p = 0.009). Greater precuneus/PCC activation was found to correlate with greater CBCL internalizing (r = 0.60, p = 0.032) and total (r = 0.69, p = 0.009) problems. In all, this study shows hyperactivity of posterior DMN during self-referential processing in pre-adolescent FHR children. This finding posits DMN-related disturbances in self-processing as a developmental brain abnormality associated with familial risk factors that predates not just psychosis, but also the prodromal stage. Moreover, our results suggest that early disturbances in self-referential processing may be related to internalizing problems in at-risk children
    corecore