28 research outputs found

    EUSTEPs administrative staff teaching module

    Get PDF
    Enhancing Universities’ Sustainability TEaching and Practices – EUSTEPs – is a project financed by ERASMUS+ program that features the collaboration among four European Universities and one Non-Governmental Organization. The team is coordinated by Aristotle University of Thessaloniki (AUTh), and is comprised of members from University of Siena (UNISI), Italy, University of Aveiro (UAv) and Universidade Aberta (UAb), both in Portugal, and Global Footprint Network (GFN), California, USA. The project aims to introduce a broader and holistic approach to sustainability within universities, having developed already one module dedicated to students and another for educators. In addition to this purpose, the project also envisions the development of a Footprint Calculator for Universities’ campus, allowing Institutions to acknowledge the environmental dimension of sustainability and connect it to their everyday functioning. All the actors whitin HEIs (students, academic staff, administrative staff and management bodies) are called to embrace a more sustainable campus, developing a set of multidisciplinary skills and a necessary shift in attitudes. This module is dedicated to the Administrative Staff of Higher Education Institutions (HEIs) and embraces a hands-on, experiential approach to sustainability understanding and Ecological Footprint concept. By presenting sustainability within the context of everyday life rather than through mere abstract theories and concepts around sustainability and, bridging with the 2030 UN Agenda Sustainable Development Goals, the administrative staff will be able to grasp how sustainability relates to not only the whole spectrum of daily life but also with their workplace and the administration of HEIs. The core aspect of the EUSTEPs Module to HEIs Administrative Staff is: 1. To make the administrative staff aware of sustainability and Ecological Footprint concepts. 2. To empower them to affect the sustainability of their workspace, as well as their community, bringing sustainability knowledge and its associated skills (usually limited to academics, researchers and students). Throughout this module, the administrative staff will not only be able to learn about sustainability and the human-environment relationship but also track their own individual Footprints; through discussing their results and behavior decisions with peers to shape a “learning by group discussion” process.ERASMUS+, KA203 2019-2022, Agreement No. 2019-1-ELO1-KA203-062941info:eu-repo/semantics/publishedVersio

    “EUSTEPs Educators teaching module: sustainability around us: from theory to practice...and back”

    Get PDF
    This module, developed by the ERASMUS+ project EUSTEPs (Enhancing Universities’ Sustainability TEaching and Practices), uses a “learning-by-doing” approach to equip EU university students with science-based knowledge, multidisciplinary skills, and the transdisciplinary mindset needed to play a critical role in our societal effort towards sustainability, thus allowing students to be best prepared for the future labour market. The module is made highly effective by the adoption of the concept of Ecological Footprint (EF), a well-known and widespread quantitative approach to study, assess and understand sustainability concept. The EF is an ecology-based environmental accounting method, but we propose it not as a technical tool but as a medium to transfer important aspects of sustainability from a wide range of teachers to a wide range of students. This is possible by virtue of the verified ability of the EF method and related accessories to communicate, inform, visualize, and represent sustainability in its variegated forms. The module embraces a hands-on, experiential approach to sustainability teaching: by presenting sustainability within the context of everyday life rather than through a mere abstract teaching of intangible theories and concepts, the goal of the module is to allow students to understand, realize, and learn the full complexity of the economy-society-environment relationships, and help them grasp how sustainability relates to the whole spectrum of daily life. A series of universal, community and environmental education pedagogical approaches (PA) are employed in this module for the development of sustainability competencies. More specifically, seven out of the ten literature suggested education for sustainable development (ESD) pedagogical approaches are commissioned in this EUSTEPs teaching module, including the universal PAs of Case studies, Interdisciplinary team teaching/planning, Lecturing, Concept maps, Project or problem based learning, along with the community PA of Participatory Action Research, and the environmental education PA of Place-based environmental education.“EUSTEPs: Enhancing Universities’ Sustainability Teaching and Practices through Ecological Footprint”, KA 203, Strategic Partnership in Higher Education 2019-2022, Agreement No. 2019-1-EL01-KA203-062941.info:eu-repo/semantics/publishedVersio

    Guidelines for setting-up transdisciplinary sustainability courses

    Get PDF
    This report, developed by the ERASMUS+ project EUSTEPs (Enhancing Universities’ Sustainability TEaching and Practices), presents Guidelines for the creation of a Sustainability Course. It proposes a transdisciplinary curricular unit that can be included within all University degree programs (both bachelor and master). The document includes possible reasons, procedures, contents, and opportunities connected to such didactic initiative, with the aim of creating an approach that can be replicated in many Universities around the world interested in its implementation. It builds on the multi-year experience of the University of Siena (Italy) as a reference point, and the positive feedback from the EUSTEPs’ academic consortium members (namely Aristotle University of Thessaloniki, University of Aveiro and Universidade Aberta). Thanks to its flexibility, every University can interpret the proposal presented in this report in a different way and proceed according to its own preferences, conditions, knowledge, and rules.ERASMUS+, KA203 2019-2022, Agreement No. 2019-1-ELO1-KA203-062941info:eu-repo/semantics/publishedVersio

    Μέθοδοι αποθήκευσης περίσσιας ενέργειας από ΑΠΕ με μορφή Υδρογόνου

    No full text
    Το Υδρογόνο αποτελεί το πρώτο χημικό στοιχείο του περιοδικού πίνακα και ο ατομικός του αριθμός είναι ίσος με 1. Συμβολίζεται με τον λατινικό χαρακτήρα Η από την λέξη Hydrogen. Είναι το ελαφρύτερο χημικό στοιχείο και αποτελείται από τον πυρήνα (πρωτόνιο) και ένα ηλεκτρόνιο στην εξωτερική του στιβάδα. Αποτελεί ένα στοιχείο, το οποίο δεν μπορούμε να εντοπίσουμε από μόνο του στην φύση ως μεμονωμένο άτομο, αλλά μέσα σε χημικές ενώσεις. Μπορεί ωστόσο να παραχθεί από διαφορετικές πρωτογενείς πηγές ενέργειας και με διάφορες τεχνολογίες παραγωγής. Ως στοιχείο μπορούμε να το εντοπίσουμε σε διάφορες οργανικές ενώσεις, στο νερό, τους υδρογονάνθρακες και την βιομάζα. Αφού το παράγουμε μπορεί να χρησιμοποιηθεί είτε ως καύσιμο για άμεση καύση σε κινητήρες εσωτερικής καύσης, είτε σε κυψέλη καυσίμων παράγωντας μόνο νερό ως υποπροϊόν. Ως καύσιμο το υδρογόνο είναι παγκοσμίως αποδεκτό ως μία περιβαλλοντικά καλοήθης δευτερογενής μορφή ανανεώσιμης ενέργειας εναλλακτική των ορυκτών καυσίμων. Έτσι, η παραγωγή του βασίζεται σε βιομηχανικές μεθόδους, κυρίως με την «αναμόρφωση» του φυσικού αερίου, και λιγότερο συχνά με την ιδιαίτερα ενεργοβόρα μέθοδο της ηλεκτρόλυσης του νερού. Υπό κανονικές συνθήκες, το υδρογόνο βρίσκεται σε αέρια μορφή. Για την αποθήκευσή του και τη μεταφορά του θα πρέπει να συμπιεστεί σε πάρα πολύ μεγάλη πίεση ή και να ψυχθεί σε εξαιρετικά χαμηλές θερμοκρασίες, γεγονός που αποτελεί μία από τις σημαντικότερες προκλήσεις στη διανομή του. Το υδρογόνο δεν είναι τοξικό, ένα όμως από τα βασικά του προβλήματα έχει να κάνει με την πτητικότητά του, καθώς «δραπετεύει» ακόμα και από συμπαγές ανοξείδωτο ατσάλι! Το γεγονός αυτό καθιστά περίπλοκη την κατάλληλη κατασκευή των σωλήνων μεταφοράς του, καθώς και των δοχείων αποθήκευσής του. Σε σχέση με τα συμβατικά καύσιμα, διαθέτει μεγαλύτερη ενεργειακή πυκνότητα με βάση τη μάζα του, κάτι που θεωρητικά εξασφαλίζει μεγαλύτερη αυτονομία. Εντούτοις για τη μεταφορά ικανής ποσότητας υδρογόνου μέσα σε ένα ρεζερβουάρ θα χρειαστεί να συμπιεστεί σε πολύ υψηλή πίεση. Το πράσινο υδρογόνο αναφέρεται στο υδρογόνο που παράγεται μέσω της ηλεκτρόλυσης του νερού, με την ηλεκτρική ενέργεια που χρησιμοποιείται στη διαδικασία να προέρχεται από ανανεώσιμες πηγές, όπως ο άνεμος και ο ήλιος. Το υδρογόνο έχει ένα ευρύ φάσμα εφαρμογών και μπορεί να αναπτυχθεί σε τομείς όπως η βιομηχανία και οι μεταφορές. Παραδείγματα της χρήσης του στις μεταφορές περιλαμβάνουν τρένα, αεροπλάνα, αυτοκίνητα και λεωφορεία που κινούνται με κυψέλες καυσίμου υδρογόνου. Θεωρείται ως ένα κρίσιμο γρανάζι στα σχέδια της Ευρωπαϊκής Ένωσης για την απαλλαγή από άνθρακα. Η ΕΕ έχει σχεδιάσει να εγκαταστήσει 40 gigawatt ανανεώσιμων ηλεκτρολυτών υδρογόνου και να παράγει έως και 10 εκατομμύρια μετρικούς τόνους ανανεώσιμου υδρογόνου έως το 2030. Τέλος, είναι γνωστό ότι το πράσινο υδρογόνο είναι ακριβό στην παραγωγή. Παρόλα αυτά μια έκθεση της Wood Mackenzie που κυκλοφόρησε τον Αύγουστο, αναφέρει ότι το κόστος θα μπορούσε να μειωθεί έως και 64% έως το έτος 2040.Hydrogen is the first chemical element in the periodic table and has the atomic number 1. It is symbolized by the Latin letter H which comes from the word Hydrogen. It is the lightest chemical element and consists of the nucleus (proton) and an electron in its outer shell. It is an element, which we cannot detect by itself in nature as a single atom, but in chemical compounds. However, it can be produced from different primary energy sources and by a variety of production technologies. As an element it can be located it in various organic compounds, such as water, hydrocarbons and biomass. Once produced it can be used either as fuel for direct combustion in internal combustion engines, or in a fuel cell producing only water as a by-product. As a fuel, hydrogen is universally accepted as an environmental benign secondary form of renewable energy alternative to fossil fuels. Thus, its production is based on industrial methods, mainly with the "reforming" of natural gas, and less often with the particularly energy-intensive method of water electrolysis. Under normal conditions, hydrogen is in gaseous form. In order to store and transport it, it will have to be compressed to a very high pressure or cooled to extremely low temperatures, which is one of the most important challenges in its distribution. Hydrogen is non-toxic, but volatility is one of its main problems, as it "escapes" even from solid stainless steel! This fact complicates the proper construction of its transport pipes, as well as its storage containers. Compared to conventional fuels, it has a higher energy density based on its mass, which theoretically ensures greater autonomy. However, to transport a sufficient amount of hydrogen into a tank it will need to be compressed to a very high pressure. The term green hydrogen refers to hydrogen produced through the electrolysis of water, and the electricity used in the process is derived from renewable energy sources such as wind and solar. Hydrogen has a wide range of applications and can be deployed in areas such as industry and transport. Examples of its use in transportation include trains, planes, cars and buses powered by hydrogen fuel cells. It is considered as a critical tool in the European Union's decarbonisation plans. The EU has planned to install 40 gigawatts of renewable hydrogen electrolytes and to produce up to 10 million metric tons of renewable hydrogen by 2030. In addition, green hydrogen is expensive to produce, although a Wood Mackenzie report released in August said costs could drop by as much as 64% by 2040

    Insect Outbreak and Long-Term Post-Fire Effects on Soil Erosion in Mediterranean Suburban Forest

    No full text
    Our study was conducted in the suburban forest of Thessaloniki (Seich Sou), which constitutes one of the most significant suburban forests of Greece and is located northeast of Thessaloniki. In 1997, more than the half of the forest area was destroyed by a wildfire, while recently (May 2019), a significant insect outbreak by the bark beetle Tomicus piniperda was detected. The insect action still goes on, while the infestation has destroyed so far more than 300 ha of forest area. Extensive selective logging and removal of infected trees from the forest were carried out in order to mitigate and restrict the outbreak spread. In the current study, silt-fenced erosion plots were installed on representative locations of disturbed (by fire and insect action) and undisturbed areas, in order to quantify the effect of the above-mentioned forest disturbances on soil erosion and correlate the height and intensity of precipitation with the soil erosion rate. The results show that there was no statistically significant increase in soil erosion in the areas of insect outbreak compared with the control plots. However, there was a statistically significant increase in soil erosion in areas where logging works had been applied as an infestation preventive measure. In addition, the study revealed that 25 years after the forest fire, the erosion rate is still at higher level compared with the undisturbed forest areas. This study could be considered as one of the first attempts to evaluate the impact of an insect outbreak infestation on soil erosion, while there is also a great lack of information concerning the assessment of long-term post-fire effects on the soil erosion of a forest ecosystem

    The Effect of Embodied Impact on the Cost-Optimal Levels of Nearly Zero Energy Buildings: A Case Study of a Residential Building in Thessaloniki, Greece

    No full text
    Considering the nearly zero energy building (nZEB) and the increased measures for the improvement of the energy efficiency, the international literature indicates an extended use of specialized materials and technical installations. An increase in the embodied energy follows that use, with a final share between 74% and 100% in the total life cycle energy of residential nZEBs. The current energy efficiency legislation considers only the impact from the operational phase and ignores the embodied impact from the remaining life cycle phases of the building. Nevertheless, the delegated regulation 244 of 2012 acknowledges the incompleteness of this assessment and provides an optional consideration of the embodied (“grey”) energy. The current study applies this option through the macroeconomic global cost calculations and the cost-optimal levels of nZEBs. The results indicate a limited effect of the embodied impact on the cost-optimal levels and in specific on extended calculation periods and in combination with other key parameters of the sensitivity analysis. An increase in the primary energy and a transposition to variants with lower use of materials and decreased embodied emissions follow this effect. Sensitivity analysis confirms the calculation period as a key parameter and indicates the need for further research
    corecore