67 research outputs found

    Studies of molecular mechanisms integrating carbon metabolism and growth in plants

    Get PDF
    Plants use light energy, carbon dioxide and water to produce sugars and other carbohydrates, which serve as stored energy reserves and as building blocks for biosynthetic reactions. Supply of light is variable and plants have evolved means to adjust their growth and development accordingly. An increasing body of evidence suggests that the basic mechanisms for sensing and signaling energy availability in eukaryotes are evolutionary conserved and thus shared between plants, animals and fungi. I have used different experimental approaches that take advantage of findings from other eukaryotes in studying carbon and energy metabolism in plants. In the first part, I developed a novel screening procedure in yeast aimed at isolating cDNAs from other organisms encoding proteins with a possible function in sugar sensing or signaling. The feasibility of the method was confirmed by the cloning of a cDNA from Arabidopsis thaliana encoding a new F-box protein named AtGrh1, which is related to the yeast Grr1 protein that is involved in glucose repression. In the second part of the study, plant homologues of key components in the yeast glucose repression pathway were cloned and characterized in the moss Physcomitrella patens, in which gene function can be studied by gene targeting. We first cloned PpHXK1 which was shown to encode a chloroplast localized hexokinase representing a previously overlooked class of plant hexokinases with an N-terminal chloroplast transit peptide. Significantly, PpHxk1 is the major hexokinase in Physcomitrella, accounting for 80% of the glucose phosphorylating activity. A knockout mutant deleted for PpHXK1 exhibits a complex phenotype affecting growth, development and sensitivities to plant hormones. I also cloned and characterized two closely related Physcomitrella genes, PpSNF1a and PpSNF1b, encoding type 1 Snf1-related kinases. A double knockout mutant for these genes was viable even though it lacks detectable Snf1-like kinase activity. The mutant suffers from pleiotropic phenotypes which may reflect a constitutive high energy growth mode. Significantly, the double mutant requires constant high light and is therefore unable to grow in a normal day/night light cycle. These findings are consistent with the proposed role of the Snf1-related kinases as energy gauges which are needed to recognize and respond to low energy conditions

    Dependence on clade II bHLH transcription factors for nursing of haploid products by tapetal-like cells is conserved between moss sporangia and angiosperm anthers

    Get PDF
    Clade II basic helix-loop-helix transcription factors (bHLH TFs) are essential for pollen production and tapetal nursing functions in angiosperm anthers. As pollen has been suggested to be related to bryophyte spores by descent, we characterized two Physcomitrium (Physcomitrella) patens clade II bHLH TFs (PpbHLH092 and PpbHLH098), to test if regulation of sporogenous cells and the nursing cells surrounding them is conserved between angiosperm anthers and bryophyte sporangia. We made CRISPR-Cas9 reporter and loss-of-function lines to address the function of PpbHLH092/098. We sectioned and analyzed WT and mutant sporophytes for a comprehensive stage-by-stage comparison of sporangium development. Spore precursors in the P. patens sporangium are surrounded by nursing cells showing striking similarities to tapetal cells in angiosperms. Moss clade II bHLH TFs are essential for the differentiation of these tapetal-like cells and for the production of functional spores. Clade II bHLH TFs provide a conserved role in controlling the sporophytic somatic cells surrounding and nursing the sporogenous cells in both moss sporangia and angiosperm anthers. This supports the hypothesis that such nursing functions in mosses and angiosperms, lineages separated by roughly 450 million years, are related by descent

    Two novel types of hexokinases in the moss Physcomitrella patens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hexokinase catalyzes the phosphorylation of glucose and fructose, but it is also involved in sugar sensing in both fungi and plants. We have previously described two types of hexokinases in the moss <it>Physcomitrella</it>. Type A, exemplified by PpHxk1, the major hexokinase in <it>Physcomitrella</it>, is a soluble protein that localizes to the chloroplast stroma. Type B, exemplified by PpHxk2, has an N-terminal membrane anchor. Both types are found also in vascular plants, and localize to the chloroplast stroma and mitochondrial membranes, respectively.</p> <p>Results</p> <p>We have now characterized all 11 hexokinase encoding genes in <it>Physcomitrella</it>. Based on their N-terminal sequences and intracellular localizations, three of the encoded proteins are type A hexokinases and four are type B hexokinases. One of the type B hexokinases has a splice variant without a membrane anchor, that localizes to the cytosol and the nucleus. However, we also found two new types of hexokinases with no obvious orthologs in vascular plants. Type C, encoded by a single gene, has neither transit peptide nor membrane anchor, and is found in the cytosol and in the nucleus. Type D hexokinases, encoded by three genes, have membrane anchors and localize to mitochondrial membranes, but their sequences differ from those of the type B hexokinases. Interestingly, all moss hexokinases are more similar to each other in overall sequence than to hexokinases from other plants, even though characteristic sequence motifs such as the membrane anchor of the type B hexokinases are highly conserved between moss and vascular plants, indicating a common origin for hexokinases of the same type.</p> <p>Conclusions</p> <p>We conclude that the hexokinase gene family is more diverse in <it>Physcomitrella</it>, encoding two additional types of hexokinases that are absent in vascular plants. In particular, the presence of a cytosolic and nuclear hexokinase (type C) sets <it>Physcomitrella </it>apart from vascular plants, and instead resembles yeast, where all hexokinases localize to the cytosol. The fact that all moss hexokinases are more similar to each other than to hexokinases from vascular plants, even though both type A and type B hexokinases are present in all plants, further suggests that the hexokinase gene family in <it>Physcomitrella </it>has undergone concerted evolution.</p

    High-Performance InAs Nanowire MOSFETs

    Get PDF
    In this letter, we present a 15-nm-diameter InAs nanowire MOSFET with excellent on and off characteristics. An n-i-n doping profile was used to reduce the source and drain resistances, and an Al2O3/HfO2 bilayer was introduced in the high-k process. The nanowires exhibit high drive currents, up to 1.25 A/mm, normalized to the nanowire circumference, and current densities up to 34 MA/cm2 (VD = 0.5 V). For a nominal LG = 100 nm, we observe an extrinsic transconductance (gm) of 1.23 S/mm and a subthreshold swing of 93 mV/decade at VD = 10 mV

    High-Current GaSb/InAs(Sb) Nanowire Tunnel Field-Effect Transistors

    Get PDF
    We present electrical characterization of GaSb/InAs(Sb) nanowire tunnel ïŹeld-effect transistors. The broken band alignment of the GaSb/InAs(Sb) heterostructure is exploited to allow for interband tunneling without a barrier, leading to high ON-current levels. We report a maximum drive current of 310 ÎŒA/ÎŒm at Vds = 0.5 V. Devices with scaled gate oxides display transconductances up to gm = 250 mS/mm at Vds = 300 mV, which are normalized to the nanowire circumference at the axial heterojunction

    MS1/MMD1 homologues in the moss Physcomitrium patens are required for male and female gametogenesis

    Get PDF
    The Arabidopsis Plant HomeoDomain (PHD) proteins AtMS1 and AtMMD1 provide chromatin-mediated transcriptional regulation essential for tapetum-dependent pollen formation. This pollen-based male gametogenesis is a derived trait of seed plants. Male gametogenesis in the common ancestors of land plants is instead likely to have been reminiscent of that in extant bryophytes where flagellated sperms are produced by an elaborate gametophyte generation. Still, also bryophytes possess MS1/MMD1-related PHD proteins. We addressed the function of two MS1/MMD1-homologues in the bryophyte model moss Physcomitrium patens by the generation and analysis of reporter and loss-of-function lines. The two genes are together essential for both male and female fertility by providing functions in the gamete-producing inner cells of antheridia and archegonia. They are furthermore expressed in the diploid sporophyte generation suggesting a function during sporogenesis, a process proposed related by descent to pollen formation in angiosperms. We propose that the moss MS1/MMD1-related regulatory network required for completion of male and female gametogenesis, and possibly for sporogenesis, represent a heritage from ancestral land plants

    PIF-independent regulation of growth by an evening complex in the liverwort Marchantia polymorpha

    Get PDF
    Previous studies in the liverwort Marchantia polymorpha have shown that the putative evening complex (EC) genes LUX ARRHYTHMO (LUX) and ELF4-LIKE (EFL) have a function in the liverwort circadian clock. Here, we studied the growth phenotypes of MpLUX and MpEFL loss-of-function mutants, to establish if PHYTOCHROME-INTERACTING FACTOR (PIF) and auxin act downstream of the M. polymorpha EC in a growth-related pathway similar to the one described for the flowering plant Arabidopsis. We examined growth rates and cell properties of loss-of-function mutants, analyzed protein-protein interactions and performed gene expression studies using reporter genes. Obtained data indicate that an EC can form in M. polymorpha and that this EC regulates growth of the thallus. Altered auxin levels in Mplux mutants could explain some of the phenotypes related to an increased thallus surface area. However, because MpPIF is not regulated by the EC, and because Mppif mutants do not show reduced growth, the growth phenotype of EC-mutants is likely not mediated via MpPIF. In Arabidopsis, the circadian clock regulates elongation growth via PIF and auxin, but this is likely not an evolutionarily conserved growth mechanism in land plants. Previous inventories of orthologs to Arabidopsis clock genes in various plant lineages showed that there is high levels of structural differences between clocks of different plant lineages. Here, we conclude that there is also variation in the output pathways used by the different plant clocks to control growth and development

    Studies of moss reproductive development indicate that auxin biosynthesis in apical stem cells may constitute an ancestral function for focal growth control

    Get PDF
    The plant hormone auxin is a key factor for regulation of plant development, and this function was probably reinforced during the evolution of early land plants. We have extended the available toolbox to allow detailed studies of how auxin biosynthesis and responses are regulated in moss reproductive organs, their stem cells and gametes to better elucidate the function of auxin in the morphogenesis of early land plants. We measured auxin metabolites and identified IPyA (indole-3-pyruvic acid) as the main biosynthesis pathway inPhyscomitrium(Physcomitrella)patensand established knock-out, overexpressor and reporter lines for biosynthesis genes which were analyzed alongside previously reported auxin-sensing and transport reporters. Vegetative and reproductive apical stem cells synthesize auxin. Sustained stem cell activity depends on an inability to sense the auxin produced while progeny of the stem cells respond to the auxin, aiding in the control of cell division, expansion and differentiation. Gamete precursors are dependent on a certain degree of auxin sensing, while the final differentiation is a low auxin-sensing process. Tha data presented indicate that low auxin activity may represent a conserved hallmark of land plant gametes, and that local auxin biosynthesis in apical stem cells may be part of an ancestral mechanism to control focal growth

    The Physcomitrium patens egg cell expresses several distinct epigenetic components and utilizes homologues of BONOBO genes for cell specification

    Get PDF
    Although land plant germ cells have received much attention, knowledge about their specification is still limited. We thus identified transcripts enriched in egg cells of the bryophyte model species Physcomitrium patens, compared the results with angiosperm egg cells, and selected important candidate genes for functional analysis. We used laser-assisted microdissection to perform a cell-type-specific transcriptome analysis on egg cells for comparison with available expression profiles of vegetative tissues and male reproductive organs. We made reporter lines and knockout mutants of the two BONOBO (PbBNB) genes and studied their role in reproduction. We observed an overlap in gene activity between bryophyte and angiosperm egg cells, but also clear differences. Strikingly, several processes that are male-germline specific in Arabidopsis are active in the P. patens egg cell. Among those were the moss PbBNB genes, which control proliferation and identity of both female and male germlines. Pathways shared between male and female germlines were most likely present in the common ancestors of land plants, besides sex-specifying factors. A set of genes may also be involved in the switches between the diploid and haploid moss generations. Nonangiosperm gene networks also contribute to the specification of the P. patens egg cell

    The Physcomitrium patens egg cell expresses several distinct epigenetic components and utilizes homologs of BONOBO genes for cell specification

    Get PDF
    Although land plant germ cells have received much attention, knowledge about their speci-ïŹcation is still limited. We thus identiïŹed transcripts enriched in egg cells of the bryophyte model species Physcomitrium patens, compared the results with angiosperm egg cells, and selected important candidate genes for functional analysis. We used laser-assisted microdissection to perform a cell-type-speciïŹc transcriptome analy-sis on egg cells for comparison with available expression proïŹles of vegetative tissues and male reproductive organs. We made reporter lines and knockout mutants of the two BONOBO (PbBNB) genes and studied their role in reproduction. We observed an overlap in gene activity between bryophyte and angiosperm egg cells, but also clear differences. Strikingly, several processes that are male-germline speciïŹc in Arabidop-sis are active in the P. patens egg cell. Among those were the moss PbBNB genes, which con-trol proliferation and identity of both female and male germlines. Pathways shared between male and female germlines were most likely present in the com-mon ancestors of land plants, besides sex-specifying factors. A set of genes may also be involved in the switches between the diploid and haploid moss generations. Nonangiosperm gene networks also contribute to the speciïŹcation of the P. patens egg cell.This work was supported by grants from the Knut and Alice Wallenberg Foundation (KAW; 2012.0087 to ES), the Swedish Research Council (VR; 621-2014-4941; 2018-04068 to ES), the University of Zurich, and a grant from the ‘Staatssekretariat f€ur Bildung und Forschung’ in the framework of COST action FA0903 (to UG and AS)
    • 

    corecore