11 research outputs found

    p53-Autophagy-Metastasis Link

    No full text
    The tumor suppressor p53 as the “guardian of the genome” plays an essential role in numerous signaling pathways that control the cell cycle, cell death and in maintaining the integrity of the human genome. p53, depending on the intracellular localization, contributes to the regulation of various cell death pathways, including apoptosis, autophagy and necroptosis. Accumulated evidence suggests that this function of p53 is closely involved in the process of cancer development. Here, present knowledge concerning a p53-autophagy-metastasis link, as well as therapeutic approaches that influence this link, are discussed

    Tudor staphylococcal nuclease: biochemistry and functions

    No full text
    Tudor staphylococcal nuclease (TSN, also known as Tudor-SN, SND1 or p100) is an evolutionarily conserved protein with invariant domain composition, represented by tandem repeat of staphylococcal nuclease domains and a tudor domain. Conservation along significant evolutionary distance, from protozoa to plants and animals, suggests important physiological functions for TSN. It is known that TSN is critically involved in virtually all pathways of gene expression, ranging from transcription to RNA silencing. Owing to its high protein-protein binding affinity coexistent with enzymatic activity, TSN can exert its biochemical function by acting as both a scaffolding molecule of large multiprotein complexes and/or as a nuclease. TSN is indispensible for normal development and stress resistance, whereas its increased expression is closely associated with various types of cancer. Thus, TSN is an attractive target for anti-cancer therapy and a potent tumor marker. Considering ever increasing interest to further understand a multitude of TSN-mediated processes and a mechanistic role of TSN in these processes, here we took an attempt to summarize and update the available information about this intriguing multifunctional protein.This work was supported by grants from Knut and Alice Wallenberg Foundation (to PVB) and the Russian Science Foundation (14-25-00056; to BZ). The work in our laboratories is also supported by grants from the Olle Engkvist Foundation (to PVB), Pehrssons Fund (to PVB), the Russian Foundation for Basic Research (to TVD) and the Russian President Fund (to BZ), as well as the Stockholm and Swedish Cancer Societies (to BZ), the Swedish Childhood Cancer Foundation (to BZ), the Swedish Foundation for Strategic Research (to PVB) and the Swedish Research Council (to PVB and BZ)

    BNIP3 in Lung Cancer: To Kill or Rescue?

    No full text
    Bcl-2/adenovirus E1B 19kDa interacting protein 3 (BNIP3) is a pro-apoptotic BH3-only protein of the Bcl-2 family. Initially, BNIP3 was described as one of the mediators of hypoxia-induced apoptotic cell death in cardiac myocytes and neurons. Besides apoptosis, BNIP3 plays a crucial role in autophagy, metabolic pathways, and metastasis-related processes in different tumor types. Lung cancer is one of the most aggressive types of cancer, which is often diagnosed at an advanced stage. Therefore, there is still urgent demand for reliable biochemical markers for lung cancer and its efficient treatment. Mitochondria functioning and mitochondrial proteins, including BNIP3, have a strong impact on lung cancer development and progression. Here, we summarized current knowledge about the BNIP3 gene and protein features and their role in cancer progression, especially in lung cancer in order to develop new therapeutic approaches associated with BNIP3

    CISA: Context Substitution for Image Semantics Augmentation

    No full text
    Large datasets catalyze the rapid expansion of deep learning and computer vision. At the same time, in many domains, there is a lack of training data, which may become an obstacle for the practical application of deep computer vision models. To overcome this problem, it is popular to apply image augmentation. When a dataset contains instance segmentation masks, it is possible to apply instance-level augmentation. It operates by cutting an instance from the original image and pasting to new backgrounds. This article challenges a dataset with the same objects present in various domains. We introduce the Context Substitution for Image Semantics Augmentation framework (CISA), which is focused on choosing good background images. We compare several ways to find backgrounds that match the context of the test set, including Contrastive Language–Image Pre-Training (CLIP) image retrieval and diffusion image generation. We prove that our augmentation method is effective for classification, segmentation, and object detection with different dataset complexity and different model types. The average percentage increase in accuracy across all the tasks on a fruits and vegetables recognition dataset is 4.95%. Moreover, we show that the Fréchet Inception Distance (FID) metrics has a strong correlation with model accuracy, and it can help to choose better backgrounds without model training. The average negative correlation between model accuracy and the FID between the augmented and test datasets is 0.55 in our experiments

    In Vivo Cancer Cells Elimination Guided by Aptamer-Functionalized Gold-Coated Magnetic Nanoparticles and Controlled with Low Frequency Alternating Magnetic Field

    No full text
    Biomedical applications of magnetic nanoparticles in a magnetic field have exceeded many expectations in cancer therapy. Magnetic nanoparticles are effective heat mediators, drug nanocarriers, and contrast agents; various strategies have been suggested to selectively target tumor cancer cells but not healthy cells. Our study presents magnetodynamic nanotherapy utilizing DNA aptamer-functionalized 50 nm gold-coated magnetic nanoparticles exposed to a low frequency alternating magnetic field for precise elimination of tumor cells in vivo. The cell specific DNA aptamer AS-14 binds to fibronectin protein in Ehrlich carcinoma and delivers gold-coated magnetic nanoparticles to a mouse tumor. An alternating magnetic field of 50 Hz causesthe nanoparticles to oscillate and pull fibronectin and integrins on the surface of the cell membrane resulting in massive cell apoptosis followed by necrosis without heating the tumor, adjacent healthy cells and tissues. The aptamer-guided nanoparticles and the low frequency alternating magnetic field demonstrates a unique technology of a non-invasive nanoscalpel for precise cancer surgery at a single cell level

    In Vivo Cancer Cells Elimination Guided by Aptamer-Functionalized Gold-Coated Magnetic Nanoparticles and Controlled with Low Frequency Alternating Magnetic Field

    Get PDF
    Biomedical applications of magnetic nanoparticles in a magnetic field have exceeded many expectations in cancer therapy. Magnetic nanoparticles are effective heat mediators, drug nanocarriers, and contrast agents; various strategies have been suggested to selectively target tumor cancer cells but not healthy cells. Our study presents magnetodynamic nanotherapy utilizing DNA aptamer-functionalized 50 nm gold-coated magnetic nanoparticles exposed to a low frequency alternating magnetic field for precise elimination of tumor cells in vivo. The cell specific DNA aptamer AS-14 binds to fibronectin protein in Ehrlich carcinoma and delivers gold-coated magnetic nanoparticles to a mouse tumor. An alternating magnetic field of 50 Hz causesthe nanoparticles to oscillate and pull fibronectin and integrins on the surface of the cell membrane resulting in massive cell apoptosis followed by necrosis without heating the tumor, adjacent healthy cells and tissues. The aptamer-guided nanoparticles and the low frequency alternating magnetic field demonstrates a unique technology of a non-invasive nanoscalpel for precise cancer surgery at a single cell level

    Migration from the Newly Independent States. 25 Years After the Collapse of the USSR

    No full text
    This book discusses international migration in the newly independent states after the collapse of the Soviet Union, which involved millions of people. Written by authors from 15 countries, it summarizes the population movement over the post-Soviet territories, both within the newly independent states and in other countries over the past 25 years. It focuses on the volume of migration flows, the number and socio-demographic characteristics of migrants, migration factors and the situation of migrants in receiving countries. The authors, who include demographers, economists, geographers, anthropologists, sociologists and political scientists, used various methods and sources of information, such as censuses, administrative statistics, the results of mass sample surveys and in-depth interviews. This heterogeneity highlights the multifaceted nature of the topic of migration movements
    corecore