297 research outputs found

    J Regularization Improves Imbalanced Multiclass Segmentation

    Get PDF
    We propose a new loss formulation to further advance the multiclass segmentation of cluttered cells under weakly supervised conditions. When adding a Youden's J statistic regularization term to the cross entropy loss we improve the separation of touching and immediate cells, obtaining sharp segmentation boundaries with high adequacy. This regularization intrinsically supports class imbalance thus eliminating the necessity of explicitly using weights to balance training. Simulations demonstrate this capability and show how the regularization leads to correct results by helping advancing the optimization when cross entropy stagnates. We build upon our previous work on multiclass segmentation by adding yet another training class representing gaps between adjacent cells. This addition helps the classifier identify narrow gaps as background and no longer as touching regions. We present results of our methods for 2D and 3D images, from bright field images to confocal stacks containing different types of cells, and we show that they accurately segment individual cells after training with a limited number of images, some of which are poorly annotated

    Characterization of somatic embryogenesis initiated from the Arabidopsis shoot apex

    Get PDF
    Somatic embryogenesis is one of the best examples of the remarkable developmental plasticity of plants, in which committed somatic cells can dedifferentiate and acquire the ability to form an embryo and regenerate an entire plant. In Arabidopsis thaliana, the shoot apices of young seedlings have been reported as an alternative tissue source for somatic embryos (SEs) besides the widely studied zygotic embryos taken from siliques. Although SE induction from shoots demonstrates the plasticity of plants more clearly than the embryo-to-embryo induction system, the underlying developmental and molecular mechanisms involved are unknown. Here we characterized SE formation from shoot apex explants by establishing a system for time-lapse observation of explants during SE induction. We also established a method to distinguish SE-forming and non-SE-forming explants prior to anatomical SE formation, enabling us to identify distinct transcriptome profiles of these two explants at SE initiation. We show that embryonic fate commitment takes place at day 3 of SE induction and the SE arises directly, not through callus formation, from the base of leaf primordia just beside the shoot apical meristem (SAM), where auxin accumulates and shoot-root polarity is formed. The expression domain of a couple of key developmental genes for the SAM transiently expands at this stage. Our data demonstrate that SE-forming and non-SE-forming explants share mostly the same transcripts except for a limited number of embryonic genes and root genes that might trigger the SE-initiation program. Thus, SE-forming explants possess a mixed identity (SAM, root and embryo) at the time of SE specification

    Plant Stem Cell Signaling Involves Ligand-Dependent Trafficking of the CLAVATA1 Receptor Kinase

    Get PDF
    Background: Cell numbers in above-ground meristems of plants are thought to be maintained by a feedback loop driven by perception of the glycopeptide ligand CLAVATA3 (CLV3) by the CLAVATA1 (CLV1) receptor kinase and the CLV2/CORYNE (CRN) receptor-like complex [1]. CLV3 produced in the stem cells at the meristem apex limits the expression level of the stem cell-promoting homeodomain protein WUSCHEL (WUS) in the cells beneath, where CLV1 and WUS RNA are localized. WUS downregulation nonautonomously reduces stem cell proliferation. Overexpression of CLV3 eliminates the stem cells, causing meristem termination [2], and loss of CLV3 function allows meristem overproliferation [3]. There are many questions regarding the CLV3/CLV1 interaction, including where in the meristem it occurs, how it is regulated, and how it is that a large range of CLV3 concentrations gives no meristem size phenotype [4]. Results: Here we use genetics and live imaging to examine the cell biology of CLV1 in Arabidopsis meristematic tissue. We demonstrate that plasma membrane-localized CLV1 is reduced in concentration by CLV3, which causes trafficking of CLV1 to lytic vacuoles. We find that changes in CLV2 activity have no detectable effects on CLV1 levels. We also find that CLV3 appears to diffuse broadly in meristems, contrary to a recent sequestration model [5]. Conclusions: This study provides a new model for CLV1 function in plant stem cell maintenance and suggests that downregulation of plasma membrane-localized CLV1 by its CLV3 ligand can account for the buffering of CLV3 signaling in the maintenance of stem cell pools in plants

    Modulation of Asymmetric Division Diversity through Cytokinin and SPEECHLESS Regulatory Interactions in the Arabidopsis Stomatal Lineage

    Get PDF
    Coordinated growth of organs requires communication among cells within and between tissues. In plants, leaf growth is largely dictated by the epidermis; here, asymmetric and self-renewing divisions of the stomatal lineage create two essential cell types—pavement cells and guard cells—in proportions reflecting inputs from local, systemic, and environmental cues. The transcription factor SPEECHLESS (SPCH) is the prime regulator of divisions, but whether and how it is influenced by external cues to provide flexible development is enigmatic. Here, we show that the phytohormone cytokinin (CK) can act as an endogenous signal to affect the extent and types of stomatal lineage divisions and forms a regulatory circuit with SPCH. Local domains of low CK signaling are created by SPCH-dependent cell-type-specific activity of two repressive type-A ARABIDOPSIS RESPONSE REGULATORs (ARRs), ARR16 and ARR17, and two secreted peptides, CLE9 and CLE10, which, together with SPCH, can customize epidermal cell-type composition

    A Robust and Sensitive Synthetic Sensor to Monitor the Transcriptional Output of the Cytokinin Signaling Network in Planta

    Get PDF
    Cytokinins are classic plant hormones that orchestrate plant growth, development, and physiology. They affect gene expression in target cells by activating a multistep phosphorelay network. Type-B response regulators, acting as transcriptional activators, mediate the final step in the signaling cascade. Previously, we have introduced a synthetic reporter, Two Component signaling Sensor (TCS)::green fluorescent protein (GFP), which reflects the transcriptional activity of type-B response regulators. TCS::GFP was instrumental in uncovering roles of cytokinin and deepening our understanding of existing functions. However, TCS-mediated expression of reporters is weak in some developmental contexts where cytokinin signaling has a documented role, such as in the shoot apical meristem or in the vasculature of Arabidopsis (Arabidopsis thaliana). We also observed that GFP expression becomes rapidly silenced in TCS::GFP transgenic plants. Here, we present an improved version of the reporter, TCS new (TCSn), which, compared with TCS, is more sensitive to phosphorelay signaling in Arabidopsis and maize (Zea mays) cellular assays while retaining its specificity. Transgenic Arabidopsis TCSn::GFP plants exhibit strong and dynamic GFP expression patterns consistent with known cytokinin functions. In addition, GFP expression has been stable over generations, allowing for crosses with different genetic backgrounds. Thus, TCSn represents a significant improvement to report the transcriptional output profile of phosphorelay signaling networks in Arabidopsis, maize, and likely other plants that display common response regulator DNA-binding specificities

    Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases

    Get PDF
    The CLAVATA3 (CLV3)-CLAVATA1 (CLV1) ligand-receptor kinase pair negatively regulates shoot stem cell proliferation in plants. clv1 null mutants are weaker in phenotype than clv3 mutants, but the clv1 null phenotype is enhanced by mutations in the related receptor kinases BARELY ANY MERISTEM 1, 2 and 3 (BAM1, 2 and 3). The basis of this genetic redundancy is unknown. Here, we demonstrate that the apparent redundancy in the CLV1 clade is in fact due to the transcriptional repression of BAM genes by CLV1 signaling. CLV1 signaling in the rib meristem (RM) of the shoot apical meristem is necessary and sufficient for stem cell regulation. CLV3-CLV1 signaling in the RM represses BAM expression in wild-type Arabidopsis plants. In clv1 mutants, ectopic BAM expression in the RM partially complements the loss of CLV1. BAM regulation by CLV1 is distinct from CLV1 regulation of WUSCHEL, a proposed CLV1 target gene. In addition, quadruple receptor mutants are stronger in phenotype than clv3, pointing to the existence of additional CLV1/BAM ligands. These data provide an explanation for the genetic redundancy seen in the CLV1 clade and reveal a novel feedback operating in the control of plant stem cells

    TIDEE: Tidying Up Novel Rooms using Visuo-Semantic Commonsense Priors

    Full text link
    We introduce TIDEE, an embodied agent that tidies up a disordered scene based on learned commonsense object placement and room arrangement priors. TIDEE explores a home environment, detects objects that are out of their natural place, infers plausible object contexts for them, localizes such contexts in the current scene, and repositions the objects. Commonsense priors are encoded in three modules: i) visuo-semantic detectors that detect out-of-place objects, ii) an associative neural graph memory of objects and spatial relations that proposes plausible semantic receptacles and surfaces for object repositions, and iii) a visual search network that guides the agent's exploration for efficiently localizing the receptacle-of-interest in the current scene to reposition the object. We test TIDEE on tidying up disorganized scenes in the AI2THOR simulation environment. TIDEE carries out the task directly from pixel and raw depth input without ever having observed the same room beforehand, relying only on priors learned from a separate set of training houses. Human evaluations on the resulting room reorganizations show TIDEE outperforms ablative versions of the model that do not use one or more of the commonsense priors. On a related room rearrangement benchmark that allows the agent to view the goal state prior to rearrangement, a simplified version of our model significantly outperforms a top-performing method by a large margin. Code and data are available at the project website: https://tidee-agent.github.io/

    Frequency of Th17 CD20+ cells in the peripheral blood of rheumatoid arthritis patients is higher compared to healthy subjects

    Get PDF
    addresses: Peninsula Medical School, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK. [email protected]: PMCID: PMC3334661types: Journal Article; Research Support, Non-U.S. Gov'tRheumatoid arthritis (RA) is considered a T cell driven autoimmune disease, therefore, the ability of B cell depleting biologics, e.g., anti-CD20 antibodies, to alleviate RA is unclear. This study examined the proportions of IL-17-secreting lymphocytes in the blood of healthy subjects and RA patients and determined if Th17 cells belong to a CD20+ subset of T cells

    Computational morphodynamics of plants: integrating development over space and time

    Get PDF
    The emerging field of computational morphodynamics aims to understand the changes that occur in space and time during development by combining three technical strategies: live imaging to observe development as it happens; image processing and analysis to extract quantitative information; and computational modelling to express and test time-dependent hypotheses. The strength of the field comes from the iterative and combined use of these techniques, which has provided important insights into plant development

    An epidermis-driven mechanism positions and scales stem cell niches in plants.

    Get PDF
    How molecular patterning scales to organ size is highly debated in developmental biology. We explore this question for the characteristic gene expression domains of the plant stem cell niche residing in the shoot apical meristem. We show that a combination of signals originating from the epidermal cell layer can correctly pattern the key gene expression domains and notably leads to adaptive scaling of these domains to the size of the tissue. Using live imaging, we experimentally confirm this prediction. The identified mechanism is also sufficient to explain de novo stem cell niches in emerging flowers. Our findings suggest that the deformation of the tissue transposes meristem geometry into an instructive scaling and positional input for the apical plant stem cell niche.This work was funded by grants from the Gatsby Charitable Foundation (GAT3395/PR4) and the Swedish Research Council (VR2013-4632) to HJ; and by Gatsby Charitable Foundation grants GAT3272/C and GAT3273-PR1, the US National Institutes of Health (R01 GM104244), the Howard Hughes Medical Institute, and the Gordon and Betty Moore Foundation (GBMF3406) to EMM).This is the final version of the article. It first appeared from the American Association for the Advancement of Science via http://dx.doi.org/10.1126/sciadv.150098
    • …
    corecore