178 research outputs found

    The NHS England 100,000 Genomes Project:feasibility and utility of centralised genome sequencing for children with cancer

    Get PDF
    Background: Whole-genome sequencing (WGS) of cancers is becoming an accepted component of oncological care, and NHS England is currently rolling out WGS for all children with cancer. This approach was piloted during the 100,000 genomes (100 K) project. Here we share the experience of the East of England Genomic Medicine Centre (East-GMC), reporting the feasibility and clinical utility of centralised WGS for individual children locally. Methods: Non-consecutive children with solid tumours were recruited into the pilot 100 K project at our Genomic Medicine Centre. Variant catalogues were returned for local scrutiny and appraisal at dedicated genomic tumour advisory boards with an emphasis on a detailed exploration of potential clinical value. Results: Thirty-six children, representing one-sixth of the national 100 K cohort, were recruited through our Genomic Medicine Centre. The diagnoses encompassed 23 different solid tumour types and WGS provided clinical utility, beyond standard-of-care assays, by refining (2/36) or changing (4/36) diagnoses, providing prognostic information (8/36), defining pathogenic germline mutations (1/36) or revealing novel therapeutic opportunities (8/36). Conclusion: Our findings demonstrate the feasibility and clinical value of centralised WGS for children with cancer. WGS offered additional clinical value, especially in diagnostic terms. However, our experience highlights the need for local expertise in scrutinising and clinically interpreting centrally derived variant calls for individual children.</p

    Challenging our understanding of B-cell lymphomagenesis and risk:Paediatric high-grade B-cell lymphoma, not otherwise specified with a DDX3X::MLLT10 fusion and an IGH deletion

    Get PDF
    We report a unique case of high-grade B-cell lymphoma, not otherwise specified in a 5-year-old child. Whole-genome sequencing revealed a DDX3X::MLLT10 fusion, usually seen in T-cell acute lymphoblastic leukaemia (ALL). This suggests the novel idea that MLLT10 fusions are capable of driving B-cell malignancies. An IGH deletion usually only seen in adults was also found. These unique genetic findings provide novel insights into B-cell lymphomagenesis. The child remains in remission 7 year post chemotherapy, which demonstrates that novel complex molecular findings do not always denote high-risk disease.</p

    The driver landscape of sporadic chordoma.

    Get PDF
    Chordoma is a malignant, often incurable bone tumour showing notochordal differentiation. Here, we defined the somatic driver landscape of 104 cases of sporadic chordoma. We reveal somatic duplications of the notochordal transcription factor brachyury (T) in up to 27% of cases. These variants recapitulate the rearrangement architecture of the pathogenic germline duplications of T that underlie familial chordoma. In addition, we find potentially clinically actionable PI3K signalling mutations in 16% of cases. Intriguingly, one of the most frequently altered genes, mutated exclusively by inactivating mutation, was LYST (10%), which may represent a novel cancer gene in chordoma.Chordoma is a rare often incurable malignant bone tumour. Here, the authors investigate driver mutations of sporadic chordoma in 104 cases, revealing duplications in notochordal transcription factor brachyury (T), PI3K signalling mutations, and mutations in LYST, a potential novel cancer gene in chordoma

    Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma

    Get PDF
    Osteosarcoma is a primary malignancy of bone that affects children and adults. Here, we present the largest sequencing study of osteosarcoma to date, comprising 112 childhood and adult tumours encompassing all major histological subtypes. A key finding of our study is the identification of mutations in insulin-like growth factor (IGF) signalling genes in 8/112 (7%) of cases. We validate this observation using fluorescence in situ hybridization (FISH) in an additional 87 osteosarcomas, with IGF1 receptor (IGF1R) amplification observed in 14% of tumours. These findings may inform patient selection in future trials of IGF1R inhibitors in osteosarcoma. Analysing patterns of mutation, we identify distinct rearrangement profiles including a process characterized by chromothripsis and amplification. This process operates recurrently at discrete genomic regions and generates driver mutations. It may represent an age-independent mutational mechanism that contributes to the development of osteosarcoma in children and adults alike

    Diagnostic value of H3F3A mutations in giant cell tumour of bone compared to osteoclast-rich mimics

    Get PDF
    Driver mutations in the two histone 3.3 (H3.3) genes, H3F3A and H3F3B, were recently identified by whole genome sequencing in 95% of chondroblastoma (CB) and by targeted gene sequencing in 92% of giant cell tumour of bone (GCT). Given the high prevalence of these driver mutations, it may be possible to utilise these alterations as diagnostic adjuncts in clinical practice. Here, we explored the spectrum of H3.3 mutations in a wide range and large number of bone tumours (n 5 412) to determine if these alterations could be used to distinguish GCT from other osteoclast-rich tumours such as aneurysmal bone cyst, nonossifying fibroma, giant cell granuloma, and osteoclast-rich malignant bone tumours and others. In addition, we explored the driver landscape of GCT through whole genome, exome and targeted sequencing (14 gene panel). We found that H3.3 mutations, namely mutations of glycine 34 in H3F3A, occur in 96% of GCT. We did not find additional driver mutations in GCT, including mutations in IDH1, IDH2, USP6, TP53. The genomes of GCT exhibited few somatic mutations, akin to the picture seen in CB. Overall our observations suggest that the presence of H3F3A p.Gly34 mutations does not entirely exclude malignancy in osteoclast-rich tumours. However, H3F3A p.Gly34 mutations appear to be an almost essential feature of GCT that will aid pathological evaluation of bone tumours, especially when confronted with small needle core biopsies. In the absence of H3F3A p.Gly34 mutations, a diagnosis of GCT should be made with caution

    Mutations in FRMD7, a newly identified member of the FERM family, cause X-linked idiopathic congenital nystagmus.

    Get PDF
    Idiopathic congenital nystagmus is characterized by involuntary, periodic, predominantly horizontal oscillations of both eyes. We identified 22 mutations in FRMD7 in 26 families with X-linked idiopathic congenital nystagmus. Screening of 42 singleton cases of idiopathic congenital nystagmus (28 male, 14 females) yielded three mutations (7%). We found restricted expression of FRMD7 in human embryonic brain and developing neural retina, suggesting a specific role in the control of eye movement and gaze stability

    Circulating tumor DNA in patients with colorectal adenomas: assessment of detectability and genetic heterogeneity.

    Get PDF
    Improving early detection of colorectal cancer (CRC) is a key public health priority as adenomas and stage I cancer can be treated with minimally invasive procedures. Population screening strategies based on detection of occult blood in the feces have contributed to enhance detection rates of localized disease, but new approaches based on genetic analyses able to increase specificity and sensitivity could provide additional advantages compared to current screening methodologies. Recently, circulating cell-free DNA (cfDNA) has received much attention as a cancer biomarker for its ability to monitor the progression of advanced disease, predict tumor recurrence and reflect the complex genetic heterogeneity of cancers. Here, we tested whether analysis of cfDNA is a viable tool to enhance detection of colon adenomas. To address this, we assessed a cohort of patients with adenomas and healthy controls using droplet digital PCR (ddPCR) and mutation-specific assays targeted to trunk mutations. Additionally, we performed multiregional, targeted next-generation sequencing (NGS) of adenomas and unmasked extensive heterogeneity, affecting known drivers such as APC, KRAS and mismatch repair (MMR) genes. However, tumor-related mutations were undetectable in patients' plasma. Finally, we employed a preclinical mouse model of Apc-driven intestinal adenomas and confirmed the inability to identify tumor-related alterations via cfDNA, despite the enhanced disease burden displayed by this experimental cancer model. Therefore, we conclude that benign colon lesions display extensive genetic heterogeneity, that they are not prone to release DNA into the circulation and are unlikely to be reliably detected with liquid biopsies, at least with the current technologies

    Recurrent rearrangements of FOS and FOSB define osteoblastoma.

    Get PDF
    The transcription factor FOS has long been implicated in the pathogenesis of bone tumours, following the discovery that the viral homologue, v-fos, caused osteosarcoma in laboratory mice. However, mutations of FOS have not been found in human bone-forming tumours. Here, we report recurrent rearrangement of FOS and its paralogue, FOSB, in the most common benign tumours of bone, osteoblastoma and osteoid osteoma. Combining whole-genome DNA and RNA sequences, we find rearrangement of FOS in five tumours and of FOSB in one tumour. Extending our findings into a cohort of 55 cases, using FISH and immunohistochemistry, provide evidence of ubiquitous mutation of FOS or FOSB in osteoblastoma and osteoid osteoma. Overall, our findings reveal a human bone tumour defined by mutations of FOS and FOSB
    • …
    corecore