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Recurrent rearrangements of FOS and FOSB define
osteoblastoma
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The transcription factor FOS has long been implicated in the pathogenesis of bone tumours,

following the discovery that the viral homologue, v-fos, caused osteosarcoma in laboratory

mice. However, mutations of FOS have not been found in human bone-forming tumours.

Here, we report recurrent rearrangement of FOS and its paralogue, FOSB, in the most com-

mon benign tumours of bone, osteoblastoma and osteoid osteoma. Combining whole-

genome DNA and RNA sequences, we find rearrangement of FOS in five tumours and of FOSB

in one tumour. Extending our findings into a cohort of 55 cases, using FISH and immuno-

histochemistry, provide evidence of ubiquitous mutation of FOS or FOSB in osteoblastoma

and osteoid osteoma. Overall, our findings reveal a human bone tumour defined by mutations

of FOS and FOSB.
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Osteoblastoma is the most common benign bone-forming
tumour. It typically occurs in the medulla of long bones
and the neural arch from where it may extend into the

vertebral body1. Osteoid osteoma is thought to represent a variant
of osteoblastoma. The two entities are distinguished arbitrarily by
size, with osteoblastoma measuring more than 2 cm in diameter.
Large, inaccessible and recurrent tumours can cause considerable
morbidity1. Treatment is by surgical resection. The genetic
changes underpinning osteoblastoma have been studied at the
resolution of karyotypes and copy number arrays. Copy number
losses involving chromosome 22 and rearrangements involving
chromosome 14 have been reported in rare cases only2,3.

Diagnosis of osteoblastoma is currently based on histological
assessment. Occasionally this can be challenging, as osteo-
blastoma has to be distinguished from osteoblastic osteosarcoma,
an aggressive bone cancer that requires extensive, sometimes
disabling, multimodal treatment4.

Here, we sought to define the somatic changes that underpin
osteoblastoma. Our starting point was a discovery cohort of six
tumours, five osteoblastomas and one osteoid osteoma, that we
subjected to RNA and whole-genome DNA sequencing. Tissue
was obtained from frozen tumour and corresponding germline
DNA sequences derived from blood samples. Using the analysis
pipeline of the Cancer Genome Project (‘Methods’), we generated
catalogues of all classes of somatic mutations: substitutions,
indels, structural variants (rearrangements) and copy number
changes. Transcriptome sequences were analysed to corroborate
DNA changes and to call gene fusions.

Our key finding was recurrent, disease-defining structural
variation of the FOS and FOSB oncogenes in osteoblastoma and
osteoid osteoma.

Results
Osteoblastoma habours few somatic alterations. Overall, there
was a paucity of somatic alterations in osteoblastoma, with a
median mutation burden of 319 substitutions per genome (range,
123–700) and 28 indels per genome (range, 14–50; Supplemen-
tary Data 1–3). Similarly, copy number analyses demonstrated
diploid tumours with few aberrations (Supplementary Fig. 1 and
Supplementary Data 4). The previously reported losses in chro-
mosome 22 were not seen in our cases2. Only a small number of
mutations affected the coding sequence of genes, none of which
were plausible driver events.

Recurrent FOS and FOSB rearrangements. Against this back-
drop of a quiet somatic architecture, analysis of structural variants
revealed break points in the AP-1 transcription factor FOS, in 5/6
cases, and its paralogue FOSB in the sixth case (Figs. 1 and 2; and
Supplementary Data 5). We analysed and validated these rearran-
gements at the DNA level by local assembly, copy number analyses
and at the RNA level by identification of break point spanning
cDNA reads (Supplementary Data 6–8). A single FOS or FOSB
break point was confirmed in each sample, suggesting that these
were mono-allelic rearrangements. There was no evidence of similar
rearrangements in paired normal tissue samples, confirming that
they were somatic. FOS rearrangements were also validated with
Sanger sequencing of cDNA (Supplementary Fig. 2).

Unusually for structural variants, all FOS break points were
exonic, residing within a narrow genomic window of exon 4
(Fig. 1a). The rearrangements comprised both interchromosomal
and intrachromosomal events. The rearrangement partners were
introns of other genes (3/5 cases) or intergenic regions (2/5 cases).
There was evidence of expression of the fusion transcript, visible
as aberrant spikes in RNA-Seq read coverage adjacent to the
break point in the fusion partners. However, these aberrantly

transcribed sequences did not include any known exonic
sequence. Indeed, stop codons were encountered at, or immedi-
ately after the break points (Fig. 1d and Supplementary Fig. 2).

FOSB rearrangements have been described in two different
types of vascular tumours, namely pseudomyogenic haeman-
gioendothelioma and epithelioid haemangioma5,6. The inter-
chromosomal translocation, found in PD7525a, occurred in the
same region of exon 1 (Fig. 2). cDNA reads spanning the fusion
junction support the expression of a fusion gene, connecting, in
frame, PPP1R10 to FOSB. Consequently, the expression of the
FOSB fusion gene would be brought under the control of the
PPP1R10 promoter (Supplementary Fig. 3).

In contrast to the FOSB genomic alteration, the rearrangements
of FOS do not involve coding sequence of other genes.
Transcription remained under the control of its native promoter.
Furthermore, in 2/5 cases the fusion partner did not lie within a
gene. These observations are supported by re-analyses of RNA
sequences of epithelioid haemangioma harbouring FOS rearran-
gements (Fig. 1d)7,8. Similarly to osteoblastoma, the break points
in these vascular tumours clustered within the same narrow 200
bp window of exon 4. Furthermore, stop codons were again found
in the immediate vicinity of the FOS break point.

FOS and FOSB alterations are ubiquitous in osteoblastoma. To
validate our findings, we examined by fluorescence in situ
hybridisation (FISH) an extension cohort of 55 formalin-fixed
paraffin-embedded (FFPE) histologically typical cases of osteo-
blastoma and osteoid osteoma (Supplementary Data 1). In these
55 samples, we found FOSB and FOS breakapart signals in 1 and
48 tumours, respectively (89% in total; Supplementary Data 1).

We speculated that the six FISH-negative cases may also
harbour FOS or FOSB rearrangements that were not detected
because FISH analysis is hampered in tumours of low cellularity,
a frequent feature of osteoblastoma1. FISH may also miss cases
with short distance intrachromosomal rearrangements, such as
tandem duplications, that insufficiently separate probe target
sequences. Since sufficient tissue was available for 3/6 negative
cases, we sought alternative evidence for FOS dysregulation by
immunohistochemistry. All three samples demonstrated strong
nuclear FOS immunoreactivity, supporting the notion that
alterations in FOS or FOSB underpin every case of osteoblastoma
and osteoid osteoma (Supplementary Fig. 4b). FOSB immuno-
histochemistry was uninformative in osteoblastoma, consistent
with previous experience with decalcified tumours (Supplemen-
tary Fig. 4c)9.

FOS and FOSB alterations are specific to benign bone tumours.
To explore the utility of our findings as diagnostic markers of
osteoblastoma, we assessed their specificity across different
tumour sets. We examined FOS immunoreactivity in 183 cases of
osteosarcoma, including 97 cases of osteoblastic osteosarcoma,
and 17 cases of angiosarcoma. In keeping with previous reports,
FOS immunoreactivity was seen in osteosarcoma samples but
only one had a distribution and intensity of immunoreactivity
comparable with osteoblastoma10. While there were no break-
apart signals in FOS or FOSB on FISH testing, copy number gains
were noted (Supplementary Fig. 4d). We then examined 55
whole-genome sequences of two published osteosarcoma series,
none of which harboured break points in FOS or FOSB11,12.
Finally, we could not find similar FOS and FOSB rearrangements
in whole-genome sequences in 2652 non-osteoblastoma
tumours13. Taken together, our findings indicate that FOS and
FOSB alterations may be exploited as diagnostic markers for
osteoblastoma and osteoid osteoma. We also demonstrate for the
first time that both tumour types are similar at a molecular level.
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Fig. 1 FOS fusions in osteoblastoma. a Clustered break points in FOS. b Central Circos plot showing the clustering of break points in FOS-mutant samples.
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Discussion
Rearrangements of FOS moulded a mutant transcript that lacks
regulatory elements. This configuration bears a striking resem-
blance to the retroviral oncogene, v-fos, identified in the FBJ
murine osteosarcoma virus (Fig. 1c, d). Dysregulated expression
of the murine orthologue, c-fos, can cause osteosarcoma in model
systems but requires fusion with a highly active promoter and the
v-fos 3′ untranslated region14.

FOS levels are tightly regulated by both transcript and protein
degradation. Two translation-dependent mechanisms ensure
rapid mRNA degradation: a length-dependent interaction
between the poly-A tail and an exon 3 domain (known as the
major coding region determinant of instability)15, and an inde-
pendent AU-rich element in the 3′ untranslated region16. Both
mechanisms are likely to be disrupted by the rearrangements we
have found. Furthermore, ubiquitin-independent proteasomal
degradation rapidly depletes the wild-type FOS protein17. The C-
terminal truncations seen in epithelioid haemangioma have
recently been shown to protect FOS from degradation18. While
the break points disrupt components of the C-terminal transac-
tivation domain, this is not required for in vitro transformation
by v-fos19,20. While we cannot also exclude alteration of AP-1
activity we would expect increased FOS concentration in osteo-
blastoma cells. Consistent with this prediction, we observed
intense nuclear immunoreactivity of FOS in osteoblastoma cells
(Fig. 1f and Supplementary Data 1). Our findings may explain the
absence of nonsense mutations in FOS, as only rearrangements
could abolish both levels of regulation.

Fifty years after the identification of v-fos we report human
bone-forming tumours, osteoblastoma and osteoid osteoma, that
are predominantly characterised by an aberrant FOS homologue
resembling the viral fos oncogene. This shifts our understanding
of FOS/AP-1 dysregulation in human bone tumours. Our findings
also draw an intriguing parallel between bone-forming tumours
and a subset of vascular tumours, suggesting possible shared
developmental pathways. Patients are likely to benefit from our
findings, as they can be readily translated into routine diagnostic
practice.

Methods
Patient samples. Patients provided their written and informed consent to provide
samples for this study, which was approved by the National Research Ethics Service
(NRES) Committee Yorkshire and The Humber – Leeds East (15/YH/0311).

Sequencing. Tumour DNA and RNA were derived from fresh-frozen tissue
reviewed by bone pathologists (A.M.F./R.T./F.A.). Matched normal DNA was
acquired from blood samples. Whole-genome sequencing was performed using the
Illumina HiSeq 2000 or 2500 platform, using 100 bp paired-end sequencing. For
whole-genome sequencing, we followed the Illumina no-PCR library protocol to
construct short insert 500 bp libraries, prepare flowcells and generate clusters. The
average coverage of tumours was at least 40× and of normal DNA at least 30× after
alignment with BWA-Mem (2.0.54)21 (Supplementary Data 9). Poly-A RNA was
sequenced on an Illumina HiSeq 2000 (75 bp paired-end). Sequenced RNA libraries
were aligned with STAR (2.0.42)22.

Variant detection. The Cancer Genome Project (Wellcome Trust Sanger Institute)
variant calling pipeline was used to call somatic mutations. The following algo-
rithms, with standard settings, and no additional post-processing was used on
aligned DNA BAM files: CaVEMan (1.11.0)23 for substitutions; Pindel (2.1.0)24 for
indels; BRASS (5.3.3 https://github.com/cancerit/BRASS) for rearrangements, and
ASCAT NGS (4.0.0)25 for copy number aberrations. Aligned RNA BAM files,
including those realigned from published data, were run through the RNA-Seq
analysis pipeline (https://github.com/cancerit/cgpRna/wiki), which includes HTSeq
(0.6.1)26 for gene feature counts, and the combination of STAR (2.5.0c), TopHat2
(2.1.0)27 and deFuse (0.7.0)28 fusion discovery protocols.

Variant validation. The precision of Cancer Genome Project (Wellcome Trust
Sanger Institute) variant calling pipeline has been determined in multiple studies29.
We confirmed this through manual inspection of raw sequencing reads. As for
rearrangements, we only included break points in this data set that had been
validated by reconstruction at base pair resolution.

Analysis of mutations in cancer genes. We analysed variants using a previously
documented strategy12. In brief, we considered variants as potential drivers if they
presented in established cancer genes (COSMIC v82). Tumour suppressor coding
variants were considered if they were annotated as functionally deleterious by the
in-house algorithm, VAGrENT (http://cancerit.github.io/VAGrENT/). Disruptive
rearrangement break points in or homozygous deletions of tumour suppressors
were also considered. Additionally, homozygous deletions were required to be focal
(<1 Mb in size). Mutations in oncogenes were considered driver events if they were
located at previously reported hot spots (point mutations) or amplified the intact
gene. Amplifications also had to be focal (<1Mb) result in at least five copies in
diploid genomes.

Fusion detection. Rearrangements in FOS and FOSB were analysed using the
DNA structural rearrangement caller, BRASS and the in-house RNA fusion
detection algorithm, infuse. Fusions were considered if break points and orienta-
tions were supported by both algorithms. All reads supporting the break points
were manually inspected. In sample PD13482, in which neither algorithm identi-
fied the fusion, both split reads and discordant read pairs spanning the fusion were
identified in the DNA- and RNA-Seq data.

All FOS fusion partner break points were located in genomic regions not
normally represented in RNA sequencing libraries as they were intergenic or
intronic segments. The per-base coverage in these regions therefore reveals a clear
peak, present only in that tumour sample, demonstrating expression of aberrant
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transcripts (normalised by the mean of HTSeq counts ×103). The end of the
transcript was considered to be 10–30 bp downstream of the cleavage and poly-
adenylation signal (‘AATAAA’) with the greatest drop in coverage in the
surrounding 200 bp. For schematic purposes, mean normalised coverage was
plotted as a segment, as Fig. 1: the ‘mate transcript segment’ is between the break
point (grey vertical dashed line) and the poly-adenylation cleavage site;
surrounding segments are the mean sequencing coverage over a genomic range of
equal length to the ‘mate transcript segment’.

FOS fusion validation. cDNA was synthesised from 1 µg of total RNA was using
the ProtoScript® II First-Strand cDNA Synthesis Kit (NEB). PCR was performed
with Phusion high-fidelity PCR master mix (HF buffer, NEB) using the primers
listed in Supplementary Data 10. Amplified products were size selected using gel
electrophoresis and then Sanger sequenced using an internal primer listed in
Supplementary Data 10.

Allele-specific expression analysis. We analysed allele-specific expression in FOS
and FOSB using allele counts at heterozygous single-nucleotide polymorphisms
(SNPs). To allow for poor alignment in RNA-Seq data close to break points, allele
counts at heterozygous SNPs were computed manually. Heterozygous SNPs were
identified from DNA sequencing data. Allele counts were measured from RNA-Seq
reads using GATK ASEReadCounter30.

Fluorescence in situ hybridisation (FISH) for FOS and FOSB. A cohort of 55
informative cases of osteoblastoma/osteoid osteoma was examined by FISH for
FOS breakapart. FOSB probes were custom designed with Agilent SureDesign to
flank the breakapart region. FOS probes and methods have been described pre-
viously8 (Supplementary Data 11). In brief, deparaffinised sections were pretreated
by pressure cooking for 5 min and subsequently incubated in pepsin solution at 37
°C for 50 min. Probes were applied to tissue sections and denatured at 72 °C,
followed by hybridisation overnight at 37 °C. After hybridisation, the sections were
washed and mounted with 4′,6-diamidino-2-phenylindole and coverslips.

Immunohistochemistry for FOS and FOSB. Deparaffinised hydrated tissue sec-
tions underwent antigen unmasking in Tris-EDTA pH 9 (DAKO S2367 - Agilent
Technologies LDA UK Limited, Cheshire, UK) at high pressure for 2 min. After
washing and quenching, sections were blocked in 2.5% horse serum (Vector
ImmPRESS Kit) for 20 min at room temperature. Incubation with primary anti-
bodies was for 60 min, secondary antibodies for 30 min, and DAB+ substrate/
chromagen (Dako, K3468) for 5 min, all at room temperature, prior to counter-
staining and mounting. FOS antibodies were EMD Millipore ABE457 (Rabbit
Polyclonal, used at 1 or 0.5 µg mL−1) and ImmPRESS Horse Radish Peroxidase
Anti-Rabbit IgG (Peroxidase) Polymer Detection Kit, made in Horse (MP-7401,
Vector Laboratories, Peterborough, UK) while FOSB antibodies (clone 5G4, dilu-
tion 1:100, Cell Signaling Technology, Danvers, MA and rabbit polyclonal
CAMTA1 antibody Atlas Antibodies, Stockholm, Sweden) were as previously
described31.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its supplementary files or from the cor-
responding author on reasonable request. Sequencing data have been deposited at
the European Genome-Phenome Archive (http://www.ebi.ac.uk/ega/) that is hosted
by the European Bioinformatics Institute. DNA (https://www.ebi.ac.uk/ega/
datasets/EGAD00001000785; https://www.ebi.ac.uk/ega/datasets/
EGAD00001000147) accession numbers: EGAN00001100713, EGAN00001100730,
EGAN00001100714, EGAN00001100731, EGAN00001100715,
EGAN00001100732, EGAN00001031765, EGAN00001032117,
EGAN00001031767, EGAN00001032119, EGAN00001036773,
EGAN00001036983. RNA (https://www.ebi.ac.uk/ega/studies/EGAS00001000763)
accession numbers: EGAN00001196539, EGAN00001196540, EGAN00001209957,
EGAN00001196544, EGAN00001196545, EGAN00001209959.
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