15 research outputs found

    Effects of permafrost aggradation on peat properties as determined from a pan-arctic synthesis of plant macrofossils

    Get PDF
    ©2015. American Geophysical Union. All Rights Reserved.This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/2015JG003061Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, C/N ratio) and C accumulation rates among vegetation types and environmental classes. Consequences of permafrost aggradation differed between boreal and tundra biomes, including differences in vegetation composition, C/N ratios, and N content. The vegetation composition of tundra permafrost peatlands was similar to permafrost-free fens, while boreal permafrost peatlands more closely resembled permafrost-free bogs. Nitrogen content in boreal permafrost and thawed permafrost peatlands was significantly lower than in permafrost-free bogs despite similar vegetation types (0.9% versus 1.5% N). Median long-term C accumulation rates were higher in fens (23 g C m-2 y-1) than in permafrost-free bogs (18 g C m-2 y-1), and were lowest in boreal permafrost peatlands (14 g C m-2 y-1). The plant macrofossil record demonstrated transitions from fens to bogs to permafrost peatlands, bogs to fens, permafrost aggradation within fens, and permafrost thaw and re-aggradation. Using data synthesis, we've identified predominant peatland successional pathways, changes in vegetation type, peat properties, and C accumulation rates associated with permafrost aggradation.National Science FoundationUSGS Climate and Land-useChange Research and Development ProgramAcademy of FinlandRoyal Swedish Academy of ScienceYmer-80, Knut & Alice Wallenberg and Ahlmann Foundation

    Links between atmospheric carbon dioxide, the land carbon reservoir and climate over the past millennium

    No full text
    The stability of terrestrial carbon reservoirs is thought to be closely linked to variations in climate, but the magnitude of carbon–climate feedbacks has proved difficult to constrain for both modern and millennial timescales. Reconstructions of atmospheric CO2 concentrations for the past thousand years have shown fluctuations on multidecadal to centennial timescales, but the causes of these fluctuations are unclear. Here we report high-resolution carbon isotope measurements of CO2 trapped within the ice of the West Antarctic Ice Sheet Divide ice core for the past 1,000 years. We use a deconvolution approach to show that changes in terrestrial organic carbon stores best explain the observed multidecadal variations in the δ13C of CO2 and in CO2 concentrations from 755 to 1850 CE. If significant long-term carbon emissions came from pre-industrial anthropogenic land-use changes over this interval, the emissions must have been offset by a natural terrestrial sink for 13C-depleted carbon, such as peatlands. We find that on multidecadal timescales, carbon cycle changes seem to vary with reconstructed regional climate changes. We conclude that climate variability could be an important control of fluctuations in land carbon storage on these timescales

    Recent climate-related terrestrial biodiversity research in Canada's Arctic national parks: review, summary, and management implications

    No full text
    It is now well documented that Arctic climates and ecosystems are changing at some of the fastest rates on planet Earth. These changes are significant for all Arctic biodiversity, and they are a great challenge for cooperative management boards of Canada's Arctic national parks, those legislated to maintain or improve the ecological integrity of all national parks. Owing to the inherent complexity of natural ecosystems, it is not at all clear how, nor how rapidly, these ongoing changes will affect park biodiversity and impact the traditional land-based lifestyles of Indigenous park cooperative management partners. In this context, this paper reviews and integrates recent research carried out in Canadian Arctic national parks: (1) geophysical - a reduction in glacial area and volume, active layer thickening, warming soil temperatures, and terrain instability; (2) vegetation - widespread but ecosystem-specific increases in NDVI 'greenness', plant biomass, shrub and herb coverage, and growing season lengths; and (3) wildlife-complex changes in small mammals and ungulate populations, very negative effects on some polar bear populations, and relatively stable mammalian predator and raptor populations at this time. This work provides a partial snapshot of ongoing and evolving ecological effects of climate change in Arctic national parks, and provides a strong foundation for prioritising future research and monitoring efforts. These evolving changes also undermine the historical paradigm of place-based conservation and necessitate a new approach for managing protected areas that involves acceptance of ongoing transformational change and adoption of a risk-based, forward looking paradigm in a changing world. It is proposed that Arctic national parks are ideal locations to focus Arctic science, especially as a component of a strategic, coordinated, and pan-Arctic approach to Arctic research that makes the most effective use of limited resources in the vast areas of Canadaâ¿¿s north
    corecore