260 research outputs found

    Energy Metering by using Power Line Communication

    Get PDF
    Everywhere automation is needed to reduce the work. We decided to put in to practice the meter reading using power line communication. It can be measure real time and also save the time. It had better user interface and digital data analysis. Data was send over existing carrier by using power line that's minimizes the complexity and cost of system. Energy meter reading was a monotonous and costly work. The meter reader people run through each meter and catch the meter reading manually to issue the bill which will later be entered in the billing software for payment automation. If the manual meter reading and bill data entry process can be automated then it minimizes the hard task and financial wastage system. It was used for data collecting from the meter and processing the collected data for billing and other decision purposes. We had proposed an automatic meter reading system which was low cost, high performance and cover highest coverage area. In the data receiving and processing unit meter reading was collected from the transceiver which controlled by another microcontroller. There was computer application that will take the data from the microcontroller. This was help to avoid any tampering or break down of energy. DOI: 10.17762/ijritcc2321-8169.15027

    Hawkes process as a model of social interactions: a view on video dynamics

    Get PDF
    We study by computer simulation the "Hawkes process" that was proposed in a recent paper by Crane and Sornette (Proc. Nat. Acad. Sci. USA 105, 15649 (2008)) as a plausible model for the dynamics of YouTube video viewing numbers. We test the claims made there that robust identification is possible for classes of dynamic response following activity bursts. Our simulated timeseries for the Hawkes process indeed fall into the different categories predicted by Crane and Sornette. However the Hawkes process gives a much narrower spread of decay exponents than the YouTube data, suggesting limits to the universality of the Hawkes-based analysis.Comment: Added errors to parameter estimates and further description. IOP style, 13 pages, 5 figure

    Superiority Inferences on Individual Endpoints Following Noninferiority Testing in Clinical Trials

    Get PDF
    Summary We consider the problem of drawing superiority inferences on individual endpoints following non-inferiority testing

    Molecular Flows in Contemporary Active Galaxies and the Efficacy of Radio-Mechanical Feedback

    Get PDF
    Molecular gas flows are analysed in 14 cluster galaxies (BCGs) centred in cooling hot atmospheres. The BCGs contain 109−1011 M⊙ of molecular gas, much of which is being moved by radio jets and lobes. The molecular flows and radio jet powers are compared to molecular outflows in 45 active galaxies within z < 0.2. We seek to understand the relative efficacy of radio, quasar, and starburst feedback over a range of active galaxy types. Molecular flows powered by radio feedback in BCGs are ∼10–1000 times larger in extent compared to contemporary galaxies hosting quasar nuclei and starbursts. Radio feedback yields lower flow velocities but higher momenta compared to quasar nuclei, as the molecular gas flows in BCGs are usually ∼10–100 times more massive. The product of the molecular gas mass and lifting altitude divided by the AGN or starburst power – a parameter referred to as the lifting factor – exceeds starbursts and quasar nuclei by 2–3 orders of magnitude, respectively. When active, radio feedback is generally more effective at lifting gas in galaxies compared to quasars and starburst winds. The kinetic energy flux of molecular clouds generally lies below and often substantially below a few per cent of the driving power. We find tentatively that star formation is suppressed in BCGs relative to other active galaxies, perhaps because these systems rarely form molecular discs that are more impervious to feedback and are better able to promote star formation

    A massive multiphase plume of gas in Abell 2390's brightest cluster galaxy

    Full text link
    We present new ALMA CO(2-1) observations tracing 2.2×10102.2 \times 10^{10} M⊙_{\odot} of molecular gas in Abell 2390's brightest cluster galaxy, where half the gas is located in a one-sided plume extending 15 kpc out from the galaxy centre. This molecular gas has a smooth and positive velocity gradient, and is receding 250 km/s faster at its farthest point than at the galaxy centre. To constrain the plume's origin, we analyse our new observations alongside existing X-ray, optical and radio data. We consider the possibility that the plume is jet-driven with lifting aided by jet inflated X-ray bubbles. Alternatively, it may have formed following a gravitational disturbance. In this case, the plume may either be a trail of gas stripped from the main galaxy by ram pressure, or more recently cooled and infalling gas. The galaxy's star formation and gas cooling rate suggest the lifespan of its molecular gas may be low compared with the plume's age -- which would favour a recently cooled plume. Molecular gas in close proximity to the active galactic nucleus is also indicated by 250 km/s wide CO(2-1) absorption against the radio core, as well as previously detected CO(1-0) and HI absorption. This absorption is optically thick and has a line of sight velocity towards the galaxy centre of 200 km/s. We discuss simple models to explain its origin.Comment: Submitted to MNRA

    A massive multiphase plume of gas in Abell 2390’s brightest cluster galaxy

    Get PDF
    We present new ALMA CO(2-1) observations tracing 2.2 × 1010 M. of molecular gas in Abell 2390’s brightest cluster galaxy, where half the gas is located in a one-sided plume extending 15 kpc out from the galaxy centre. This molecular gas has a smooth and positive velocity gradient, and is receding 250 km s−1 faster at its farthest point than at the galaxy centre. To constrain the plume’s origin, we analyse our new observations alongside existing X-ray, optical, and radio data. We consider the possibility that the plume is a jet-driven outflow with lifting aided by jet-inflated X-ray bubbles, is a trail of gas stripped from the main galaxy by ram pressure, or is formed of more recently cooled and infalling gas. The galaxy’s star formation and gas cooling rate suggest the lifespan of its molecular gas may be low compared with the plume’s age – which would favour a recently cooled plume. Molecular gas in close proximity to the active galactic nucleus is also indicated by 250 km s−1 wide CO(2-1) absorption against the radio core, as well as previously detected CO(1-0) and H I absorption. This absorption is optically thick and has a line-of-sight velocity towards the galaxy centre of 200 km s−1. We discuss simple models to explain its origin

    Radio jet–ISM interaction and positive radio-mechanical feedback in Abell 1795

    Get PDF
    We present XSHOOTER observations with previous ALMA, MUSE, and HST observations to study the nature of radio jet triggered star formation and the interaction of radio jets with the interstellar medium in the brightest cluster galaxy (BCG) in the Abell 1795 cluster. Using HST UV data, we determined an ongoing star formation rate of 9.3 M⊙ yr−1. The star formation follows the global Kennicutt–Schmidt law; however, it has a low efficiency compared to circumnuclear starbursts in nearby galaxies with an average depletion time of ∼1 Gyr. The star formation and molecular gas are offset by ∼1 kpc indicating that stars have decoupled from the gas. We detected an arc of high linewidth in ionized gas where electron densities are elevated by a factor of ∼4 suggesting a shock front driven by radio jets or peculiar motion of the BCG. An analysis of nebular emission line flux ratios suggests that the gas is predominantly ionized by star formation with a small contribution from shocks. We also calculated the velocity structure function (VSF) of the ionized and molecular gases using velocity maps to characterize turbulent motion in the gas. The ionized gas VSF suggests that the radio jets are driving supersonic turbulence in the gas. Thus radio jets cannot only heat the atmosphere on large scales and may quench star formation on longer time-scales while triggering star formation in positive feedback on short time-scales of a few million years

    Radio jet-ISM interaction and positive radio-mechanical feedback in Abell 1795

    Get PDF
    We present XSHOOTER observations with previous ALMA, MUSE, and HST observations to study the nature of radio jet triggered star formation and the interaction of radio jets with the interstellar medium in the brightest cluster galaxy (BCG) in the Abell 1795 cluster. Using HST UV data, we determined an ongoing star formation rate of 9.3 M· yr-1. The star formation follows the global Kennicutt-Schmidt law; however, it has a low efficiency compared to circumnuclear starbursts in nearby galaxies with an average depletion time of ∼1 Gyr. The star formation and molecular gas are offset by ∼1 kpc indicating that stars have decoupled from the gas. We detected an arc of high linewidth in ionized gas where electron densities are elevated by a factor of ∼4 suggesting a shock front driven by radio jets or peculiar motion of the BCG. An analysis of nebular emission line flux ratios suggests that the gas is predominantly ionized by star formation with a small contribution from shocks. We also calculated the velocity structure function (VSF) of the ionized and molecular gases using velocity maps to characterize turbulent motion in the gas. The ionized gas VSF suggests that the radio jets are driving supersonic turbulence in the gas. Thus radio jets cannot only heat the atmosphere on large scales and may quench star formation on longer time-scales while triggering star formation in positive feedback on short time-scales of a few million years
    • …
    corecore