2,528 research outputs found

    Self-assembled metallic nanoparticle template --- a new approach of surface nanostructuring at nanometer scale

    Full text link
    In the present work, the formation of silver and copper nanostructures on highly oriented pyrolytic graphite (HOPG) modified with self-assembled gold nanoparticles (Au NPs) is demonstrated. Surface patterning with nanometer resolution was achieved. Different methods such as field emission scanning electron microscopy (FEGSEM), energy dispersive spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS) were used to illustrate a selective deposition of silver and copper on Au NPs. The mechanism of silver and copper ions reduction on Au NP with nn-dodecanethiol coating is discussed.Comment: 6 pages, 3 figure

    Policy-based autonomic control service

    Get PDF
    Recently, there has been a considerable interest in policy-based, goal-oriented service management and autonomic computing. Much work is still required to investigate designs and policy models and associate meta-reasoning systems for policy-based autonomic systems. In this paper we outline a proposed autonomic middleware control service used to orchestrate selfhealing of distributed applications. Policies are used to adjust the systems autonomy and define self-healing strategies to stabilize/correct a given system in the event of failures

    A deliberative model for self-adaptation middleware using architectural dependency

    Get PDF
    A crucial prerequisite to externalized adaptation is an understanding of how components are interconnected, or more particularly how and why they depend on one another. Such dependencies can be used to provide an architectural model, which provides a reference point for externalized adaptation. In this paper, it is described how dependencies are used as a basis to systems' self-understanding and subsequent architectural reconfigurations. The approach is based on the combination of: instrumentation services, a dependency meta-model and a system controller. In particular, the latter uses self-healing repair rules (or conflict resolution strategies), based on extensible beliefs, desires and intention (EBDI) model, to reflect reconfiguration changes back to a target application under examination

    Stochastic simulation of destruction processes in self-irradiated materials

    Full text link
    Self-irradiation damages resulting from fission processes are common phenomena observed in nuclear fuel containing (NFC) materials. Numerous α\alpha-decays lead to local structure transformations in NFC materials. The damages appearing due to the impacts of heavy nuclear recoils in the subsurface layer can cause detachments of material particles. Such a behaviour is similar to sputtering processes observed during a bombardment of the material surface by a flux of energetic particles. However, in the NFC material, the impacts are initiated from the bulk. In this work we propose a two-dimensional mesoscopic model to perform a stochastic simulation of the destruction processes occurring in a subsurface region of NFC material. We describe the erosion of the material surface, the evolution of its roughness and predict the detachment of the material particles. Size distributions of the emitted particles are obtained in this study. The simulation results of the model are in a qualitative agreement with the size histogram of particles produced from the material containing lava-like fuel formed during the Chernobyl nuclear power plant disaster.Comment: 11 pages, 8 figure

    Why to Use Self Assembled Metallic Nanoparticles Template for Metal Electrodeposition: Metallic Nanostructures with Controlled Morphologies and Adjustable Wetting Properties

    Get PDF
    We investigated the benefits of using self assembled gold nanoparticles (Au NPs) template for metal electrodepositions. For short electrodeposition time, surface patterning was achieved and a well dense organized structure with nanometre resolution of metallic nanoparticles was prepared. For longer electrodeposition time, different morphologies were obtained. The mechanisms behind the formation of this morphology were analysed and discussed based on the influence of self-assembled Au NPs template in terms of thiol molecules diffusion and adsorption on metallic deposits. Furthermore adjustable wetting properties were obtained through the tuning of electrodeposition time. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3536

    A Diversity-Accuracy Measure for Homogenous Ensemble Selection

    Get PDF
    Several selection methods in the literature are essentially based on an evaluation function that determines whether a model M contributes positively to boost the performances of the whole ensemble. In this paper, we propose a method called DIversity and ACcuracy for Ensemble Selection (DIACES) using an evaluation function based on both diversity and accuracy. The method is applied on homogenous ensembles composed of C4.5 decision trees and based on a hill climbing strategy. This allows selecting ensembles with the best compromise between maximum diversity and minimum error rate. Comparative studies show that in most cases the proposed method generates reduced size ensembles with better performances than usual ensemble simplification methods
    corecore