127 research outputs found

    Itinerant U 5f band states in the layered compound UFeGa5 observed by soft X-ray angle-resolved photoemission spectroscopy

    Full text link
    We have performed angle-resolved photoemission spectroscopy (ARPES) experiments on paramagnetic UFeGa5 using soft X-ray synchrotron radiation (hn=500eV) and derived the bulk- and U 5f-sensitive electronic structure of UFeGa5. Although the agreement between the experimental band structure and the LDA calculation treating U 5f electrons as being itinerant is qualitative, the morphology of the Fermi surface is well explained by the calculation, suggesting that the U 5f states can be essentially understood within the itinerant-electron model.Comment: 13 pages, 4 figur

    Electronic structure and spectroscopy of the quaternary Heusler alloy Co2_2Cr1x_{1-x}Fex_{x}Al

    Full text link
    Quaternary Heusler alloys Co2_2Cr1x_{1-x}Fex_{x}Al with varying Cr to Fe ratio xx were investigated experimentally and theoretically. The electronic structure and spectroscopic properties were calculated using the full relativistic Korringa-Kohn-Rostocker method with coherent potential approximation to account for the random distribution of Cr and Fe atoms as well as random disorder. Magnetic effects are included by the use of spin dependent potentials in the local spin density approximation. Magnetic circular dichroism in X-ray absorption was measured at the L2,3L_{2,3} edges of Co, Fe, and Cr of the pure compounds and the x=0.4x=0.4 alloy in order to determine element specific magnetic moments. Calculations and measurements show an increase of the magnetic moments with increasing iron content. Resonant (560eV - 800eV) soft X-ray as well as high resolution - high energy (3.5\geq 3.5keV) hard X-ray photo emission was used to probe the density of the occupied states in Co2_2Cr0.6_{0.6}Fe0.4_{0.4}Al.Comment: J.Phys.D_Appl.Phys. accepte

    An invasive adenocarcinoma of the accessory parotid gland: a rare example developing from a low-grade cribriform cystadenocarcinoma?

    Get PDF
    Low-grade cribriform cystadenocarcinoma (LGCCA) is a rare tumor of the salivary gland that exhibits clinically indolent behavior. In this paper, we present a case of invasive adenocarcinoma of the accessory parotid gland in a young male that exhibited histology suggestive of an association of LGCCA. A 27-year-old man presented with a subcutaneous tumor in his left cheek. The tumor was separated from the parotid gland and located on the masseter muscle. The tumor was resected, and the postoperative histological diagnosis was adenocarcinoma, not otherwise specified (ANOS). The tumor exhibited papillary-cystic and cribriform proliferation of the duct epithelium and obvious stromal infiltration. Some tumor nests were rimmed by myoepithelium positive for smooth muscle actin, p63, and cytokeratin 14, indicating the presence of intraductal components of the tumor. Tumor cells exhibited mild nuclear atypia, and some of them presented an apocrine-like appearance and had cytoplasmic PAS-positive/diastase-resistant granules and hemosiderin. Other cells had foamy cytoplasm with microvacuoles. Immunohistochemistry revealed that the almost all of the tumor cells were strongly positive for S-100. These histological findings suggest the possibility that ANOS might arise secondarily from LGCCA. This is an interesting case regarding the association between ANOS and LGCCA in oncogenesis

    Quasiparticle interference on the surface of Bi2Se3 induced by cobalt adatom in the absence of ferromagnetic ordering

    Get PDF
    Quasiparticle interference induced by cobalt adatoms on the surface of the topological insulator Bi2Se3 is studied by scanning tunneling microscopy, angle-resolved photoemission spectroscopy, and x-ray magnetic circular dichroism. It is found that Co atoms are selectively adsorbed on top of Se sites and act as strong scatterers at the surface, generating anisotropic standing waves. A long-range magnetic order is found to be absent, and the surface state Dirac cone remains gapless. The anisotropy of the standing wave is ascribed to the heavily warped iso-energy contour of unoccupied states, where the scattering is allowed due to a nonzero out-of-plane spin

    Coordinated and Cohesive Movement of Two Small Conspecific Fish Induced by Eliciting a Simultaneous Optomotor Response

    Get PDF
    BACKGROUND: In animal groups such as herds, schools, and flocks, a certain distance is maintained between adjacent individuals, allowing them to move as a cohesive unit. Proximate causations of the cohesive and coordinated movement under dynamic conditions, however, have been poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We established a novel and simple behavioral assay using pairs of small fish (medaka and dwarf pufferfish) by eliciting a simultaneous optomotor response (OMR). We demonstrated that two homospecific fish began to move cohesively and maintained a distance of 2 to 4 cm between them when an OMR was elicited simultaneously in the fish. The coordinated and cohesive movement was not exhibited under a static condition. During the cohesive movement, the relative position of the two fish was not stable. Furthermore, adult medaka exhibited the cohesive movement but larvae did not, despite the fact that an OMR could be elicited in larvae, indicating that this ability to coordinate movement develops during maturation. The cohesive movement was detected in homospecific pairs irrespective of body-color, sex, or albino mutation, but was not detected between heterospecific pairs, suggesting that coordinated movement is based on a conspecific interaction. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that coordinated behavior between a pair of animals was elicited by a simultaneous OMR in two small fish. This is the first report to demonstrate induction of a schooling-like movement in a pair of fish by an OMR and to investigate the effect of age, sex, body color, and species on coordination between animals under a dynamic condition

    A Case of Chronic Infectious Arthritis of the Temporomandibular Joint Associated with Osteomyelitis without Malocclusion

    Get PDF
    Infectious arthritis of the temporomandibular joint (TMJ) is rare, and previous reports have identified malocclusion resulting from condylar deformity and displacement of the condyle as one of the clinical characteristics of the disease. Here we report the case of a 33-year-old man with chronic infectious arthritis of the TMJ without malocclusion associated with osteomyelitis of the right mandible. Based on radiological findings of more prominent inflammation at the TMJ than in other regions and on the observed efficacy of antibiotic administration, we made a diagnosis of suppurative arthritis of the TMJ. Based on our empirical experience, including the present case, we speculate that refusal to cooperate with medical care may be a factor in the development of infectious arthritis of the TMJ

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore