436 research outputs found

    Rapid Evaporative Ionisation Mass Spectrometry of Electrosurgical Vapours for the Identification of Breast Pathology: Towards an Intelligent Knife for Breast Cancer Surgery

    Get PDF
    Background: Re-operation for positive resection margins following breast-conserving surgery occurs frequently (average = 20–25%), is cost-inefficient, and leads to physical and psychological morbidity. Current margin assessment techniques are slow and labour intensive. Rapid evaporative ionisation mass spectrometry (REIMS) rapidly identifies dissected tissues by determination of tissue structural lipid profiles through on-line chemical analysis of electrosurgical aerosol toward real-time margin assessment. Methods: Electrosurgical aerosol produced from ex-vivo and in-vivo breast samples was aspirated into a mass spectrometer (MS) using a monopolar hand-piece. Tissue identification results obtained by multivariate statistical analysis of MS data were validated by histopathology. Ex-vivo classification models were constructed from a mass spectral database of normal and tumour breast samples. Univariate and tandem MS analysis of significant peaks was conducted to identify biochemical differences between normal and cancerous tissues. An ex-vivo classification model was used in combination with bespoke recognition software, as an intelligent knife (iKnife), to predict the diagnosis for an ex-vivo validation set. Intraoperative REIMS data were acquired during breast surgery and time-synchronized to operative videos. Results: A classification model using histologically validated spectral data acquired from 932 sampling points in normal tissue and 226 in tumour tissue provided 93.4% sensitivity and 94.9% specificity. Tandem MS identified 63 phospholipids and 6 triglyceride species responsible for 24 spectral differences between tissue types. iKnife recognition accuracy with 260 newly acquired fresh and frozen breast tissue specimens (normal n = 161, tumour n = 99) provided sensitivity of 90.9% and specificity of 98.8%. The ex-vivo and intra-operative method produced visually comparable high intensity spectra. iKnife interpretation of intra-operative electrosurgical vapours, including data acquisition and analysis was possible within a mean of 1.80 seconds (SD ±0.40). Conclusions: The REIMS method has been optimised for real-time iKnife analysis of heterogeneous breast tissues based on subtle changes in lipid metabolism, and the results suggest spectral analysis is both accurate and rapid. Proof-of-concept data demonstrate the iKnife method is capable of online intraoperative data collection and analysis. Further validation studies are required to determine the accuracy of intra-operative REIMS for oncological margin assessment

    SPUTNIK: an R package for filtering of spatially related peaks in mass spectrometry imaging data

    Get PDF
    Summary: SPUTNIK is an R package consisting of a series of tools to filter mass spectrometry imaging peaks characterized by a noisy or unlikely spatial distribution. SPUTNIK can produce mass spectrometry imaging datasets characterized by a smaller but more informative set of peaks, reduce the complexity of subsequent multi-variate analysis and increase the interpretability of the statistical results. Availability: SPUTNIK is freely available online from CRAN repository and at https://github.com/paoloinglese/SPUTNIK. The package is distributed under the GNU General Public License version 3 and is accompanied by example files and data. Supplementary information: Supplementary data are available at Bioinformatics online

    Application of novel solid phase extraction-NMR protocols for metabolic profiling of human urine

    Get PDF
    Metabolite identification and annotation procedures are necessary for the discovery of biomarkers indicative of phenotypes or disease states, but these processes can be bottlenecked by the sheer complexity of biofluids containing thousands of different compounds. Here we describe low-cost novel SPE-NMR protocols utilising different cartridges and conditions, on both natural and artificial urine mixtures, which produce unique retention profiles useful for metabolic profiling. We find that different SPE methods applied to biofluids such as urine can be used to selectively retain metabolites based on compound taxonomy or other key functional groups, reducing peak overlap through concentration and fractionation of unknowns and hence promising greater control over the metabolite annotation/identification process

    Diagnostic accuracy of intraoperative margin assessment techniques in surgery for head and neck squamous cell carcinoma: a meta-analysis

    Get PDF
    BACKGROUND: Positive margins following head and neck squamous cell carcinoma (HNSCC) surgery lead to significant morbidity and mortality. Existing Intraoperative Margin Assessment (IMA) techniques are not widely used due to limitations in sampling technique, time constraints and resource requirements. We performed a meta-analysis of the diagnostic performance of existing IMA techniques in HNSCC, providing a benchmark against which emerging techniques may be judged. METHODS: The study was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines. Studies were included if they reported diagnostic metrics of techniques used during HNSCC surgery, compared with permanent histopathology. Screening, manuscript review and data extraction was performed by multiple independent observers. Pooled sensitivity and specificity were estimated using the bivariate random effects model. RESULTS: From an initial 2344 references, 35 studies were included for meta-analysis. Sensitivity (Sens), specificity (Spec), diagnostic odds ratio (DOR) and area under the receiver operating characteristic curve (AUROC) were calculated for each group (n, Sens, Spec, DOR, AUROC): frozen section = 13, 0.798, 0.991, 309.8, 0.976; tumour-targeted fluorescence (TTF) = 5, 0.957, 0.827, 66.4, 0.944; optical techniques = 10, 0.919, 0.855, 58.9, 0.925; touch imprint cytology = 3, 0.925, 0.988, 51.1, 0.919; topical staining = 4, 0.918, 0.759, 16.4, 0.833. CONCLUSIONS: Frozen section and TTF had the best diagnostic performance. Frozen section is limited by sampling error. TTF shows promise but involves administration of a systemic agent. Neither is currently in widespread clinical use. Emerging techniques must demonstrate competitive diagnostic accuracy whilst allowing rapid, reliable, cost-effective results

    Faster, more reproducible DESI-MS for biological tissue imaging

    Get PDF
    A new, more robust sprayer for desorption electrospray ionization (DESI) mass spectrometry imaging is presented. The main source of variability in DESI is thought to be the uncontrolled variability of various geometric parameters of the sprayer, primarily the position of the solvent capillary, or more specifically, its positioning within the gas capillary or nozzle. If the solvent capillary is off-center, the sprayer becomes asymmetrical, making the geometry difficult to control and compromising reproducibility. If the stiffness, tip quality, and positioning of the capillary are improved, sprayer reproducibility can be improved by an order of magnitude. The quality of the improved sprayer and its potential for high spatial resolution imaging are demonstrated on human colorectal tissue samples by acquisition of images at pixel sizes of 100, 50, and 20 μm, which corresponds to a lateral resolution of 40-60 μm, similar to the best values published in the literature. The high sensitivity of the sprayer also allows combination with a fast scanning quadrupole time-of-flight mass spectrometer. This provides up to 30 times faster DESI acquisition, reducing the overall acquisition time for a 10 mm × 10 mm rat brain sample to approximately 1 h. Although some spectral information is lost with increasing analysis speed, the resulting data can still be used to classify tissue types on the basis of a previously constructed model. This is particularly interesting for clinical applications, where fast, reliable diagnosis is required. Graphical Abstract ᅟ

    Mass recalibration for desorption electrospray ionization mass spectrometry imaging using endogenous reference ions

    Get PDF
    Abstract Background Mass spectrometry imaging (MSI) data often consist of tens of thousands of mass spectra collected from a sample surface. During the time necessary to perform a single acquisition, it is likely that uncontrollable factors alter the validity of the initial mass calibration of the instrument, resulting in mass errors of magnitude significantly larger than their theoretical values. This phenomenon has a two-fold detrimental effect: (a) it reduces the ability to interpret the results based on the observed signals, (b) it can affect the quality of the observed signal spatial distributions. Results We present a post-acquisition computational method capable of reducing the observed mass drift by up to 60 ppm in biological samples, exploiting the presence of typical molecules with a known mass-to-charge ratio. The procedure, tested on time-of-flight and Orbitrap mass spectrometry analyzers interfaced to a desorption electrospray ionization (DESI) source, improves the molecular annotation quality and the spatial distributions of the detected ions. Conclusion The presented method represents a robust and accurate tool for performing post-acquisition mass recalibration of DESI-MSI datasets and can help to increase the reliability of the molecular assignment and the data quality. </jats:sec

    A novel methodology for in vivo endoscopic phenotyping of colorectal cancer based on real-time analysis of the mucosal lipidome: a prospective observational study of the iKnife

    Get PDF
    Background: This pilot study assessed the diagnostic accuracy of rapid evaporative ionization mass spectrometry (REIMS) in colorectal cancer (CRC) and colonic adenomas. Methods: Patients undergoing elective surgical resection for CRC were recruited at St. Mary’s Hospital London and The Royal Marsden Hospital, UK. Ex vivo analysis was performed using a standard electrosurgery handpiece with aspiration of the electrosurgical aerosol to a Xevo G2-S iKnife QTof mass spectrometer (Waters Corporation). Histological examination was performed for validation purposes. Multivariate analysis was performed using principal component analysis and linear discriminant analysis in Matlab 2015a (Mathworks, Natick, MA). A modified REIMS endoscopic snare was developed (Medwork) and used prospectively in five patients to assess its feasibility during hot snare polypectomy. Results: Twenty-eight patients were recruited (12 males, median age 71, range 35–89). REIMS was able to reliably distinguish between cancer and normal adjacent mucosa (NAM) (AUC 0.96) and between NAM and adenoma (AUC 0.99). It had an overall accuracy of 94.4 % for the detection of cancer versus adenoma and an adenoma sensitivity of 78.6 % and specificity of 97.3 % (AUC 0.99) versus cancer. Long-chain phosphatidylserines (e.g., PS 22:0) and bacterial phosphatidylglycerols were over-expressed on cancer samples, while NAM was defined by raised plasmalogens and triacylglycerols expression and adenomas demonstrated an over-expression of ceramides. REIMS was able to classify samples according to tumor differentiation, tumor budding, lymphovascular invasion, extramural vascular invasion and lymph node micrometastases (AUC’s 0.88, 0.87, 0.83, 0.81 and 0.81, respectively). During endoscopic deployment, colonoscopic REIMS was able to detect target lipid species such as ceramides during hot snare polypectomy. Conclusion: REIMS demonstrates high diagnostic accuracy for tumor type and for established histological features of poor prognostic outcome in CRC based on a multivariate analysis of the mucosal lipidome. REIMS could augment endoscopic and imaging technologies for precision phenotyping of colorectal cancer

    Enhancement of ambient mass spectrometry imaging data by image restoration

    Get PDF
    Mass spectrometry imaging (MSI) has been a key driver of groundbreaking discoveries in a number of fields since its inception more than 50 years ago. Recently, MSI development trends have shifted towards ambient MSI (AMSI) as the removal of sample-preparation steps and the possibility of analysing biological specimens in their natural state have drawn the attention of multiple groups across the world. Nevertheless, the lack of spatial resolution has been cited as one of the main limitations of AMSI. While significant research effort has presented hardware solutions for improving the resolution, software solutions are often overlooked, although they can usually be applied in a cost-effective manner after image acquisition. In this vein, we present two computational methods that we have developed to directly enhance the image resolution post-acquisition. Robust and quantitative resolution improvement is demonstrated for 12 cases of openly accessible datasets across laboratories around the globe. Using the same universally applicable Fourier imaging model, we discuss the possibility of true super-resolution by software for future studies

    Epithelial ovarian carcinoma diagnosis by desorption electrospray ionization mass spectrometry imaging

    Get PDF
    Ovarian cancer is highly prevalent among European women, and is the leading cause of gynaecological cancer death. Current histopathological diagnoses of tumour severity are based on interpretation of, for example, immunohistochemical staining. Desorption electrospray mass spectrometry imaging (DESI-MSI) generates spatially resolved metabolic profiles of tissues and supports an objective investigation of tumour biology. In this study, various ovarian tissue types were analysed by DESI-MSI and co-registered with their corresponding haematoxylin and eosin (H&E) stained images. The mass spectral data reveal tissue type-dependent lipid profiles which are consistent across the n = 110 samples (n = 107 patients) used in this study. Multivariate statistical methods were used to classify samples and identify molecular features discriminating between tissue types. Three main groups of samples (epithelial ovarian carcinoma, borderline ovarian tumours, normal ovarian stroma) were compared as were the carcinoma histotypes (serous, endometrioid, clear cell). Classification rates >84% were achieved for all analyses, and variables differing statistically between groups were determined and putatively identified. The changes noted in various lipid types help to provide a context in terms of tumour biochemistry. The classification of unseen samples demonstrates the capability of DESI-MSI to characterise ovarian samples and to overcome existing limitations in classical histopathology

    BASIS: High-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology

    Get PDF
    Mass Spectrometry Imaging (MSI) holds significant promise in augmenting digital histopathologic analysis by generating highly robust big data about the metabolic, lipidomic and proteomic molecular content of the samples. In the process, a vast quantity of unrefined data, that can amount to several hundred gigabytes per tissue section, is produced. Managing, analysing and interpreting this data is a significant challenge and represents a major barrier to the translational application of MSI. Existing data analysis solutions for MSI rely on a set of heterogeneous bioinformatics packages that are not scalable for the reproducible processing of large-scale (hundreds to thousands) biological sample sets. Here, we present a computational platform (pyBASIS) capable of optimized and scalable processing of MSI data for improved information recovery and comparative analysis across tissue specimens using machine learning and related pattern recognition approaches. The proposed solution also provides a means of seamlessly integrating experimental laboratory data with downstream bioinformatics interpretation/analyses, resulting in a truly integrated system for translational MSI
    • …
    corecore