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Abstract

Background: Re-operation for positive resection margins following breast-conserving surgery occurs frequently
(average = 20-25%), is cost-inefficient, and leads to physical and psychological morbidity. Current margin
assessment techniques are slow and labour intensive. Rapid evaporative ionisation mass spectrometry (REIMS)
rapidly identifies dissected tissues by determination of tissue structural lipid profiles through on-line chemical
analysis of electrosurgical aerosol toward real-time margin assessment.

Methods: Electrosurgical aerosol produced from ex-vivo and in-vivo breast samples was aspirated into a mass
spectrometer (MS) using a monopolar hand-piece. Tissue identification results obtained by multivariate statistical
analysis of MS data were validated by histopathology. Ex-vivo classification models were constructed from a mass
spectral database of normal and tumour breast samples. Univariate and tandem MS analysis of significant peaks
was conducted to identify biochemical differences between normal and cancerous tissues. An ex-vivo classification
model was used in combination with bespoke recognition software, as an intelligent knife (iKnife), to predict

the diagnosis for an ex-vivo validation set. Intraoperative REIMS data were acquired during breast surgery and
time-synchronized to operative videos.

Results: A classification model using histologically validated spectral data acquired from 932 sampling points in
normal tissue and 226 in tumour tissue provided 93.4% sensitivity and 94.9% specificity. Tandem MS identified 63
phospholipids and 6 triglyceride species responsible for 24 spectral differences between tissue types. iKnife
recognition accuracy with 260 newly acquired fresh and frozen breast tissue specimens (normal n =161, tumour
n=99) provided sensitivity of 90.9% and specificity of 98.8%. The ex-vivo and intra-operative method produced
visually comparable high intensity spectra. iKnife interpretation of intra-operative electrosurgical vapours, including
data acquisition and analysis was possible within a mean of 1.80 seconds (SD +0.40).
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margin assessment.

Conclusions: The REIMS method has been optimised for real-time iKnife analysis of heterogeneous breast tissues
based on subtle changes in lipid metabolism, and the results suggest spectral analysis is both accurate and rapid.
Proof-of-concept data demonstrate the iKnife method is capable of online intraoperative data collection and

analysis. Further validation studies are required to determine the accuracy of intra-operative REIMS for oncological

Keywords: Breast, Cancer, Margins, Intraoperative margin assessment, Surgery, Mass spectrometry, Rapid
evaporative ionisation mass spectrometry, REIMS, Intelligent knife, iKnife

Background

Breast cancer is the commonest cancer in women, with
the fifth highest mortality rates worldwide [1]. Breast
conserving surgery (BCS) is the most commonly per-
formed surgical technique for the treatment of women
with early stage breast cancer in both the United States
of America (USA) and the United Kingdom (UK) [2, 3].
On both sides of the Atlantic, over a fifth of patients
undergoing BCS require re-operation for inadequate
margins [3-7]. Meta-analytical data suggest that a
positive resection margin following BCS more than dou-
bles the chance of ipsilateral breast tumour regional
recurrence (IBTR) [8]. The risk of relapse is not elimi-
nated by the use of radiotherapy, systemic chemotherapy
or endocrine therapy [9].

Re-operation is associated with physical and psycho-
logical morbidity and has economic implications. Re-
operative intervention is associated with greater patient
anxiety, impaired cosmesis [10] and a higher incidence
of post-operative wound complications [11], and may
delay receipt of adjuvant therapies [12]. Moreover, re-
operation increases healthcare costs. For example, an
economic model of re-excision of breast margins in the
USA predicted that in comparison to positive margins,
re-excision of close margins (<2 mm) accounts for an
additional US$18.8 million per year whilst eliminating
re-excision of margins ultimately found to be negative
would save a further US$16.4 million per year [13].

Intraoperative margin assessment (IMA) techniques
aim to provide the surgeon with actionable information
about margin status in the midst of the index procedure
to reduce the need for re-operation. Pathological tech-
niques, frozen section and cytology (i.e. imprint, touch
and scrape) are demonstrably accurate [14] and may
reduce re-operation rates for positive margins [15, 16].
For example, frozen section has been demonstrated to
significantly reduce reoperation rates from 13.2% to
3.6% [17] and its uptake may be cost-effective [18].
However, the limitations of pathological techniques,
including slow turnaround times, manpower require-
ments, and the potential for false positive interpretation,
have limited international adoption. Specimen radiology
(SR) and intraoperative ultrasound (IOUS) can be used

to assess margin status and can be performed within the
operating theatre providing direct feedback to the sur-
geon without the need for specially trained personnel
[19, 20]. However, compared to pathological techniques
they have inferior accuracy [14], and hence do not paral-
lel the observed reductions in re-operation rates [21].

Due to the limitations of contemporary IMA tech-
niques a plethora of innovative devices are under devel-
opment aiming to provide a tool that limits workflow
disruption, provides rapid results, optimizes margin-
control and reduces re-operation rates. A variety of im-
aging and probe-based devices are emerging that are
designed to detect differences in tissue properties be-
tween cancerous and normal breast tissue [22]. Bioimpe-
dance is the measure of the response of tissue to an
externally applied electrical current; the MarginProbe™ is
quick (~5-7 minutes) and a 50% reduction in re-
operation rates is achievable despite modest sensitivity
and specificity (~70%) [23, 24]. Similarly, the ClearEdge™
system measures tissue-specific electrical properties with
promising preliminary data (sensitivity ~85%, specificity
~80%) [25]. Optical spectroscopy techniques such as
diffuse reflectance [26-28], Raman spectroscopy [29],
optical coherence tomography (OCT) [30], spatial fre-
quency domain imaging [31], fluorescence techniques
[32] and confocal microscopy [33] all measure tissue
response to light at various wavelengths, and whilst
preliminary results are promising [34], the diagnostic
accuracy of the techniques is inferior to pathological
margin assessment and technological developments are
required to increase image processing time and improve
the ease of use.

Mass spectrometry (MS) is an innovative addition to
the field of margin detection technologies. Molecules are
analysed by measuring the mass-to-charge ratio (m/z) of
molecular ions and their charged fragments. MS is well-
established as a tool for quantifying small molecules and
is also valuable for identifying metabolites and bio-
markers [35, 36]. Over the last decade, advances in MS
instrumentation have resulted in the ability to detect
proteins and metabolites directly from tissues via
imaging applications. A variety of MS platforms includ-
ing matrix-assisted laser desorption/ionisation (MALDI)
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[37] and desorption electrospray ionisation (DESI) [38]
show promise in differentiating tissue types with poten-
tial applications in rapid tissue diagnostics [39].

Rapid evaporative ionisation mass spectrometry (REIMS)
[40-42] is an ambient ionisation technique that utilizes the
aerosol by-product of electrosurgical (Bovie) tools. The elec-
trosurgical process of cutting (i.e. continuous radiofre-
quency (RF) wave) or coagulating (i.e. pulsed RF wave)
tissue causes heat to dissipate inside the tissue resulting in
cellular explosion and release of cellular content to the gas
phase. Aspiration of the aerosol allows for rapid mass spec-
trometric chemical analysis and computational algorithms
can “learn” (cf. ‘machine-learning’) to recognise the chem-
ical differences between tissue types. The technology can
identify tissue characteristics within a few seconds of elec-
trosurgical activation [41].

There is clearly a need to develop a reliable, effective, and
rapid IMA method for neoplastic tissue characterization
with accuracy competitive with standard histological as-
sessment that can guide resection in vivo and that im-
proves quality in breast surgical oncology. The REIMS
system or intelligent knife (iKnife), capable of providing
intuitive feedback on real-time tissue characterisation
at the point of dissection, offers a potential solution.
Here, we test the hypothesis that malignant breast
tissues exhibit different metabolic profiles compared to
normal breast tissues, and that these changes can be
exploited using REIMS. Finally, we demonstrate proof
of concept that the iKnife method is capable of intra-
operative analysis of electrosurgical vapours.

Methods
A single-centre, prospective observational study was per-
formed at Imperial College Healthcare NHS Trust (London,
UK). Ethical approval was gained from South East London
Research Ethics Committee Reference 11/LO/0686, the East
of England - Cambridge East Research Ethics Committee
Reference 14/EE/0024 and the project was registered under
the Imperial College Tissue Bank. Patients (>18 years of
age) undergoing breast surgery for benign and malignant
disease were recruited. Data were only obtained on patients
who had consented to utilization of tissue for research.
Demographic and clinicopathological details included
age, operation type, neoadjuvant treatment, post-operative
histopathological data including grade (1-3), tumour histo-
logical subtype (invasive ductal carcinoma (IDC), invasive
lobular carcinoma (ILC), invasive mucinous carcinoma
(IMC) or ductal carcinoma in situ (DCIS)), oestrogen re-
ceptor (ER) and progesterone receptor (PR) status and
human epidermal growth factor receptor 2 (HER2) status
(Additional file 1: Table S1). Tumours had to be of a
macroscopic size >2 cm to allow for adequate research
tissue without compromising the clinical diagnosis. Where
feasible, tissue was provided from the centre of the tumour
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from non-necrotic areas. Normal tissue was obtained from
patients without malignancy or at a site distant from the
tumour specimen. Mass-forming DCIS was suitable for
inclusion; however, patients with non-mass-forming DCIS
were excluded because the provision of tissue risked
compromising the diagnosis.

MS instrument and ex-vivo analysis workflow

Breast tissue samples were trimmed to size (3—10 mm?)
and between 1 and 10 small cuts were made through the
tissue using a modified monopolar blade electrosurgical
pencil (Medres, Hungary) in either the pure cut setting
(continuous RF wave) or fulgurate coag (pulsed RF wave)
setting with a ForceTriad™ generator (Medtronic, Ireland).
The power setting of the device varied between 10 and
30 W depending on the size and type of tissue. Aerosol
produced as a result of electrosurgical activation was aspi-
rated via the electrosurgical hand-piece [41] and transferred
through a plastic tube to the mass spectrometer using a
Venturi air jet pump. Surgical aerosol was co-aspirated with
propan-2-ol (Sigma, MO, USA) (0.2 ml/minute) into the
vacuum system of the Xevo G2-XS quadrupole time-of-
flight mass spectrometer (product use is investigational)
(Waters, UK). Aerosol particles and solvent droplets were
de-clustered using a heated jet disruptor surface in the
coarse vacuum regime of the instrument. Gaseous
negative ions then entered the MS ion optics and were
subjected to mass analysis. The remaining tissue was
transferred to histology cassettes and sent to the path-
ology laboratory to be formalin fixed, paraffin embed-
ded, sectioned and stained with haematoxylin and
eosin (H&E). Subsequently, H&E-stained slides were
examined by senior histopathologists to identify the tissue
surrounding the sampling point and assign a tissue diag-
nosis (ie. Bl =normal, B2=benign, B3 =benign with
uncertain malignant potential, B4 = suspicious, B5a =in-
situ, or B5b = invasive tumour) according to the UK Royal
College of Pathologists guidelines for non-operative diag-
nostic procedures and reporting [43].

Construction of the histologically assigned spectral
database: spectral processing, bioinformatics and
statistical analysis

To ensure only samples with adequate spectra and
representative of true pathological change were used to
build the tissue-type MS database, strict inclusion and ex-
clusion criteria were determined (detailed in Additional
file 2: Table S2); 40 specimen data files were excluded
from a total of 399, leaving 359 for analysis of normal (B1
and B2) versus tumour (B5a and B5b). Raw mass spe-
ctrometric data were processed with Offline Model
Builder (OMB-v29, Waters Research Centre, Hungary)
with a bin of 0.01 m/z with background subtraction and
lock mass correction (699.497 m/z). Spectra acquired from
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all sample burns were averaged to produce a single mass
spectrum per sample. The mass spectra from all samples
were imported into Matlab 2014a (Mathworks, MA, USA)
and profile mode alignment [44] was applied prior to peak
picking. The data were median fold change normalised
and log transformed prior to multivariate statistical ana-
lysis. Principal component analysis (PCA) was used to
identify trends in the data. Linear discriminant analysis
(LDA) was used to identify spectral differences between
cancer and normal tissue. Classification performance was
recorded for each model with a leave-one-patient-out
cross-validation scheme.

Lipid phenotyping of normal and cancerous human
breast tissue with REIMS

A sub-set of high-density (90-100%) cancer samples
(n=17) was compared to randomly selected normal breast
tissue (n=17) to determine the differences in peak inten-
sities between cancerous and normal tissue. Total intensity
normalization was performed prior to univariate analysis.
The Mann-Whitney U/ test was performed, with Benjamini-
Hochburg-Yekutieli false discovery rate correction acco-
unting for multiple testing (p < 0.05). Isotope peaks were
excluded. Thawed frozen normal (n=2) and cancer-
ous (1 = 2) breast tissues were sampled in cut mode for 10—
15 seconds to allow fragmentation of ions and collection of
tandem MS (MS/MS) data. Tentative ion identification was
performed by searching peak m/z values in the METLIN
metabolite database and with LIPID MAPS® online tools
[45, 46], which was refined using the MS/MS data.
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Ex-vivo iKnife validation

The accuracy of the combined cut and coag ex-vivo
model was tested by exporting the OMB statistical
model data into purpose-built OMB recognition soft-
ware (V29, Waters Research Centre, Hungary). The
following parameters were set: mass range 600—1000
m/z, 0.1 bin, background subtraction on and lock
mass correction to 699.497 m/z (phosphatidic acid
(PA) (36:2)). REIMS analysis was performed in cut
and coag modalities on new fresh and defrosted, nor-
mal and tumour breast tissues with both macro and
microscopic histological agreement of tissue type. The
validation spectra were pre-processed as previously
described, then transformed to the linear discriminant
space and classified to the closest class (i.e. normal or
tumour) within the space using Mahalanobis squared
distances. Recognition output was compared to histo-
pathological results from H&E slides of the same tissue
sample. For the correct classification of normal tissue,
spectra from all sampling points within the specimen
must have been registered as “normal” breast. Conversely,
for tumour, at least one spectrum detected within a
sample must have been considered positive for “tumour”.
Figure 1a illustrates the ex-vivo recognition workflow. For
additional validation, real-time ex-vivo tumour detection
was performed on three mastectomy sections using elec-
trosurgical dissection through normal breast into tumour
tissue and back to normal breast tissue. The acquisition of
REIMS spectra was synchronized with a video recording
(GoPro, CA, USA) of the smoke capture as the tissue was
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continuously cut or coagulated with an electrosurgical
blade. OMB recognition software was used to classify
tissue content and this was compared to macroscopic
tissue observations.

Intraoperative iKnife - proof of principle

To determine if the ex-vivo method was applicable to the
intraoperative environment we ran an intraoperative
proof-of-principle study. A modified Xevo G2-XS mass
spectrometer (Waters, UK) was installed in the operating
theatre and a commercially available sterile (Surg-N-Vac
or AccuVac, Covidien, UK) hand-piece was connected to
the instrument. Aerosol produced as a result of electrosur-
gical tissue manipulation was continuously aspirated into
the instrument throughout the operation. Video footage
was simultaneously recorded, capturing all activities oc-
curring at the operative scene (GoPro, CA, USA) in a
time-synchronized manner with the acquisition of spectral
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data. Video recordings enabled retrospective orientation
of spectral data with regard to three-dimensional margins.
However, presently sample size is inadequate for interpret-
ation of diagnostic accuracy. An optimised iKnife intraop-
erative workflow is displayed in Fig. 1b.

Results

REIMS spectral differences between tissue type and
electrosurgical modality

Average spectra obtained from 253 normal (Bl and B2)
and 106 tumour (B5a and B5b) samples were used to
create typical REIMS multispectral “fingerprints” for nor-
mal and cancerous breast tissue in both cut and coag elec-
trosurgical modalities (Fig. 2). Spectral feature intensities
were significantly dependent on the tissue type and elec-
trosurgical setting used. Normal tissue demonstrated high
intensity spectra in the phospholipid range (600-850 11/z)
and the triglyceride range (850—1000 71/z) using cut mode
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and predominantly in the triglyceride range using coag
mode. Conversely, tumour tissue demonstrated an in-
crease in the phospholipid range and a decrease in the
triglyceride range in both cut and coag modalities.

Creation of a REIMS ex-vivo breast tissue classification
model

Statistical models were created for normal breast (Bl
and B2) versus breast tumour (B5a and B5b) using cut,
coag or a combination of the two (combined model).
Data from 1158 sampling points from a total of 359
individual specimens; 253 normal (932 sampling points)
and 106 tumour specimens (226 sampling points) from
113 patients were used to build the combined model
(Table 1). The combined model was selected for recogni-
tion as both cut and coag modalities are frequently used
interchangeably during breast cancer surgery. For the
combined model, tumour class was distributed as 42
IDC, 8 ILC, 4 IMC and 2 DCIS (Table 1 and Additional
file 1: Table S1). The mean (+ standard deviation (SD))

Table 1 Ex-vivo database model statistics and demographics
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age of patients in the combined group was 57.2 years
(+13.48). The leave-one-patient-out cross-validation of
the corresponding statistical model based on individual
specimens (n=359) resulted in overall accuracy of
94.4%, sensitivity of 93.4% and specificity of 94.9% (Fig. 3).
For completeness, the cut model resulted in accuracy of
95.8%, sensitivity of 94.7% and specificity of 96.2%
(Additional file 3: Figure S1), whilst the coag model
resulted in overall accuracy of 94.7%, sensitivity of 93.9%
and specificity of 95.0% (Additional file 4: Figure S2).

Identification of lipids in significant peaks by MS/MS

Univariate statistical analysis was used to identify signifi-
cant peaks that differed between normal and cancerous
tissue. After exclusion of isotopes, 24 significant peaks
remained; 18 were higher in tumour tissue, with an
average of 0.5 log, fold increase compared to normal
and 6 peaks were lower in tumour, with an average of
5.7 log, fold decrease (Fig. 4 and Additional file 5:
Table S3). The five most significant variables with

Cut Coag Cut and coag combined
Total Sampling points 634 524 1158
Samples 190 169 359
Patients 108 105 113
Normal (B1 and B2) Sampling points 510 422 932
Samples 133 120 253
Patients 95 93 103
Tumour (B5a and B5b) Sampling points 124 102 226
Samples 57 49 106
Patients 53 46 56
Tumour type IDC 39 33 42
ILC 7 8
IMC 4 4 4
DCIS 2 2 2
Tumour receptor status ER+/HER2-negative 42 37 45
ER+/HER2-positive 3 3 3
ER-/HER2—positive 3 2 3
Triple-negative 3 2 3
DCIS 2 2 2
Age (mean) All 57.56 57.16 57.15
Normal 57.14 56.63 56.51
Tumour 60.94 62.13 60.73
Model statistics Sensitivity 94.7% 93.9% 93.4%
Specificity 96.2% 95.0% 94.9%
Accuracy 95.8% 94.7% 94.4%

Statistics and demographics displayed for three ex-vivo models (Cut, Coag and Combined). IDC invasive ductal carcinoma, ILC invasive lobular carcinoma, IMC
invasive mucinous carcinoma, DCIS ductal carcinoma in situ, ER+ oestrogen receptor positive, ER- oestrogen receptor negative, HER2+ human epidermal growth
factor receptor 2 positive, HER- human epidermal growth factor receptor 2 negative



St John et al. Breast Cancer Research (2017) 19:59

Page 7 of 14

Random Index

® % ® °
(] o
2 o '.$“ % o e’ o’
L]
3
° L]
5 0 5 10

a C
G o’ REIMS database
L} ry T R Nmma\-Culg +
anpte o3 ooihe Fresh samples
0 > ¢ ,. . ..& % _
§72 .‘:.'..".o “. ...‘;" .f N—359
‘5.’_4 - ". - o. .,. v v
Sokeaa’? Cut Coag
oot s o N=190 N=169
. v v v v
" N P(;JI 66% ° * N T N T
b ' d
g . o s carcascom 133 57 120 49
2 ,; 00’ : . moe Predicted Class
AT RO °
° ~ 0 B o Sop .
‘. ° ."o % ©
"dss ekt

Fig. 3 Multivariate statistical analysis of the combined cut and coag model. a Unsupervised principal component (PC) analysis of the spectral
differences (600-1000 m/z) between normal tissue compared to breast cancer in the cut and coag electrosurgical modalities. b Supervised linear
discriminant analysis plot comparing normal tissue (N) to tumour/cancer (7) regardless of electrosurgical modality. ¢ Flow diagram of sample selection
for building of the rapid evaporative ionisation mass spectrometry (REIMS) database. d Confusion matrix demonstrating diagnostic accuracy of the
combined electrosurgical model following leave-one-patient-out cross-validation (LV1), with sensitivity (93.4%) and specificity (94.9%)

Actual Class

higher cancer intensity are plotted in Fig. 5a, and the
five variables with higher intensity in normal samples
are plotted in Fig. 5b. MS/MS experiments were per-
formed to identify the lipid species. Table 2 highlights
the phospholipid species identified from the MS/MS
spectra that were elevated in cancer compared to

normal tissue (600-850m/z range). All of the lipids
identified in this range were glycerophospholipids with
phosphatidylethanolamines (PEs) being the most com-
monly identified lipid species, followed by phosphatidylcho-
lines (PCs), phosphatidic acids (PAs), phosphatidylserines
(PSs) and phosphatidylglycerols (PGs) in that order. Table 3
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summarises the triglyceride species identified from the MS/
MS spectra of peaks that were significantly lower in cancer
(850—1000 m1/7).

Ex-vivo validation of iKnife

New frozen and fresh breast specimens (# = 260) not pre-
viously used for ex-vivo model creation were subjected to
iKnife analysis using both cut and coag modalities,
employing an identical ex-vivo methodology combined
with interpretation by bespoke iKnife recognition software
(OMB V29). For the cut modality there were 79 normal
and 48 tumour specimens and for the coag modality there
were 82 normal and 51 tumour samples. Recognition soft-
ware was concordant with final histopathological assess-
ment in 249 out of 260 specimens, producing an overall
model accuracy of 95.8% with a sensitivity of 90.9% and
specificity of 98.8% (Fig. 6). Finally, the iKnife was used to
perform a continuous dissection line through the tissue in
cut and coag mode from normal, through tumour returning
to normal tissue, in a case series of three whole mastectomy
slices with large tumours (>3 cm). OMB recognition results
demonstrated good overall classification (224/231 spectra,
97% accuracy) with video synchronised macroscopic tissue
correlation (Fig. 7).
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Intraoperative iKnife - proof of principle

The iKnife was used during the entire surgical interven-
tion in six case studies as a proof of principle of the intra-
operative method. The mean time from electrosurgical
activation to detection of online analysis was 1.80 sec-
onds (SD +0.40). High intensity spectra (total ion count
(TIC) = e7-e8) were obtained in all surgical interven-
tions both in cut and coag mode throughout the oper-
ation and were comparable in intensity (TIC = e6-€8)
and overall visual morphology to the ex-vivo spectra
(Fig. 8). Of the intraoperative spectra across six surgical
interventions, 99.27% (n =5422/5462) were interpret-
able by the ex-vivo model. Only 0.73% (n = 40/5462) of
spectra were classified as outliers (greater than 2 SD)
according to the ex-vivo classification model.

Discussion

A REIMS-based histological identification method has
been successfully optimised for the real-time analysis of
heterogeneous breast tissues. The construction of an ex-
vivo database from fresh breast tissues demonstrated
significant differences in spectra related to disparity in
lipid metabolism between normal breast tissues and
breast cancer. Spectral differences observed between cut
and coag electrosurgical modalities have been combined
to create a multivariate statistical model allowing the use
of both modes interchangeably. Leave-one-patient-out
cross-validation demonstrates this model can detect
tumour with a sensitivity of 94.9% and exclude tumour
with a specificity of 93.4%, results that rival other IMA
techniques [34].

MS/MS has been used to characterise key lipid species
present in normal and cancerous breast tissue. Abun-
dance of ions associated with phospholipid species
(600-850 m/z) were increased in cancer tissues compared
to healthy tissue types, whereas intensity of ions associated
with triglyceride species (850-1000m/z) were de-
creased; a finding also reported by using alternative
techniques [47, 48]. Phospholipids serve as chief com-
ponents of biological membranes and hence they are
indispensable for proliferating cells [49]. An increase in
phospholipid synthesis is associated with lipogenic en-
zymes including fatty acid synthase and acetyl-CoA carb-
oxylase a, which are commonly upregulated in breast
cancer [50]. Lipid species, PE and PC, identified by REIMS
MS/MS have also been identified by other studies to be in-
creased in breast cancer cells [48]. Interestingly, PC (16:0/
16:0), PC (18:0/20:4), PC (18:1/20:4) have been previously
identified to be associated with ER-negative tumours and
higher grade tumours, and associated with decreased
overall survival in breast cancer patients [50].

Significant advances in software development have
enabled real-time analysis of tissue composition and
rapid comparison against the multispectral database of
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Table 2 MS/MS-based phospholipid identification increased in
breast cancer (600-850 m/z)

m/z Lipid identification lon
67147 PA (16:0/18:2) [M-H]-
A (16:1/18:1) [M-H]-
PE (16:1/160) [M-NHs-H]
67348 PA (16:0/18:1) [M-H]-
A (18:0/16:1) [M-H]
PE (16:0/16:0) [M-NHs-H]
687.5 PA (P-20:0/16:0) [M-H]-
A (0-18:0/18:1) [M-H]-
699.5 PE (16:0/18:1) [M-NH;-H]
A (181/18:1) [M-H]-
A (18:0/18:2) [M-H]-
713.51 A (P-20:0/18:1) [M-H]-
A (0-20:0/18:2) [M-H]-
G (P-16:0/18:1) M-H,0-H]
714.51 PE (16:0/18:2) [M-H]-
PE (16:1/18:1) [M-HJ-
PE (16:2/18:0) [M-HJ-
716.52 PE (18:0/16:1) [M-H]-
PE (16:0/18:1) [M-H]-
71751 A (0-16:0/20:4) M+Cl]
C (16:0/16:0) [M-CHs-H]
73547 A (P-20:0/20:4) [M-H]-
A (P-20:1/20:3) [M-H]-
G (0-18:0/16:0) M-HJ-
A (18:0/18:2) M+l
A (18:1/18:1) M+Cl]
A (P-18:0/22:4) [M-H]-
74254 E (18:0/182) [M-H]-
PE (18:1/18:1) [M-H]
C (16:1/18:1) [M-CH3-H]
C (16:0/18:2) [M-CH3-H]
744.55 C (16:0/18:1) [M-CH3-H]
C (180/16:1) (M-CH3-H]
E (180/18:1) [M-HJ-
74751 A (18:1/22:5) [M-HJ-
A (18:2/22:4) [M-H]-
E (18:1/204) [M-NH;-H]
E (16:0/22:5) [M-NH;-H]
E (18:0/20:5) [M-NH3-H]
766.54 S (P-16:0/20:4) [M-H]-
E (18:0/20:4) [M-H]-
PC (16:0/20:4) (M-CH3-H]
768.55 C (18:1/18:2) [M-CH3-H]
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Table 2 MS/MS-based phospholipid identification increased in
breast cancer (600-850 m/z) (Continued)

C (16:0/20:3) [M-CH3-H]-
PE (20:2/18:1) M-H]-
E (18:0/20:3) [M-H]-
770.57 E (18:0/20:2) [M-H]-
C (18:1/18:1) [M-CH3-H]-
C (18:0/18:2) [M-CHs-H]-
77258 E (18:0/20:1) M-H]-
C (18:0/18:1) [M-CH3-H]-
S (0-18:0/18:2) [M-H]-
E (P-18:1/22:6) M-H]-
792.55 C (16:0/18:2) M+l
C (18:2/20:3) [M-CHs-H]
C (18:0/20:5) [M-CH3-H]
C (18:1/20:4) [M-CH5-H]
E (18:1/224) [M-HJ-
E (18:0/22:5) M-H]-
794.57 C (16:0/22:4) [M-CH3-HI-
C (18:1/20:3) [M-CH3-H]-
C (18:0/20:4) [M-CH3-H]-
C (16:0/18:1) M+l

Possible lipid identifications from tandem mass spectrometry (MS/MS) data for
each significant m/z peak in negative mode. Numbers within brackets
represent the number of carbons in the fatty acid chain, followed by the
number of double bonds (C:N). PA phosphatidic acid, PE
phosphatidylethanolamine, PC phosphatidylcholine, PS phosphatidylserine

ex-vivo tissues. Specifically, we were clearly able to observe
spectra obtained in real time with onscreen classification.
Prospective ex-vivo validation with bespoke recognition
software provides evidence that the statistical model is fit
for purpose with high diagnostic accuracy demonstrated
(90.9% sensitivity, 98.8% specificity) for both fresh and
defrosted breast tissues.

Logistical barriers have been overcome and the iKnife
has now been successfully introduced to the operating

Table 3 Triglyceride identification increased in normal breast
tissue (850-1000 m/2)

m/z Lipid identification lon

865.70 TG (502) [M+ClI-
891.72 TG (52:3) [M+ClJ-
893.73 TG (52:2) M +ClJ-
917.73 TG (544) M+ Cll-
919.75 TG (543) [M+ClJ-
921.76 TG (54:2) M +ClJ-

Possible triglyceride species identified in the mass spectrometry spectra of m/z
values that are significantly lower in tumour tissue. Triglycerides are denoted
as TG (C:N) where C corresponds to the sum of the carbon atoms in the three
fatty acid chains and N corresponds to the sum of the double bonds in the
fatty acid chains
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| Ex-vivo iKnife validation
v
Fresh & Frozen
Samples N= 260
v +
Cut Coag
N=127 N=133
v v v v
N T N T
79 48 82 51
b
Histology Normal 98.8% 1.2%

(n=159) (n=2)

9.1% 90.9%
(n=9) (n=90)
Normal Tumour
iKnife

Fig. 6 Ex-vivo validation of recognition software with new samples.
a Flow diagram of samples used in the ex-vivo validation experiment.
N normal tissue, T tumour tissue. b Confusion matrix demonstrating
diagnostic accuracy of the combined electrosurgical model with a
validation set of new fresh and frozen tissues. On analysis of diagnostic
accuracy, sensitivity was 90.9% and specificity 98.8%

theatre, with a method that has been demonstrated as a
proof of concept, to function well during breast surgery.
Despite additional factors to consider such as blood flow
and body temperature, high intensity mass spectral data
were obtained during breast surgery, comparable to data
obtained in the ex-vivo setting. An ex-vivo classification
model was able to recognize a very high proportion of
intraoperative spectra (>99%), which suggests that ex-vivo
models trained on tissue type will be able to guide intra-
operative analysis. Analysis of the diathermy smoke plume
can be performed throughout the entire operation with
results presented on screen within 2 seconds of diathermy
activation. Hand-piece modifications could further im-
prove the speed of results. Increased intraoperative num-
bers and appropriate translation of the ex-vivo recognition
software for intra-operative use is required before con-
clusions can be made on the intraoperative diagnostic
accuracy, and this remains the focus of our ongoing work.
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The definition of what constitutes a positive margin
continues to be debated; however, recent guidelines from
the USA point to a narrowing of the accepted positive
margin distance. The Society of Surgical Oncology and
American Society for Radiation Oncology (SSO-ASTRO)
advises that in invasive disease a negative margin should
be considered as “no tumour on ink” [51]. This is based
on the results from a meta-analysis that demonstrated
an increase of 2.44 in the odds ratio of local recurrence
for positive margins (tumour on ink) but with no significant
benefits demonstrated for wider margins [8]. Interestingly,
only relatively small further reductions in re-operation
rates from 20.2% to 16.5% [52] and from 21.4% to
15.1% [53] have been observed following acceptance of
the 2014 SSO-ASTRO guidelines and these reduced
rates could still be considered excessive. Extrapolation
of re-operative rates of 15% combined with the annual
incidence of breast cancer and the increasing popularity
of breast conserving surgery, amounts to many thou-
sands of women undergoing potentially unnecessary
operations with a significant health and economic cost
to the patient and healthcare provider [13]. The fact
that re-operation rates of 3.6% have been demonstrated
following breast conserving surgery with the use of
routine frozen section margin assessment [17] provides
evidence that IMA techniques or technologies with
high diagnostic accuracy could be expected to substan-
tially reduce positive margin rates beyond those
achieved by a reduction in positive margin width alone.
It is therefore our opinion that there continues to be a
need for accurate and rapid IMA technology capable of
further reducing re-operation rates.

Although there are numerous established and emerging
IMA devices, penetration to routine practice has been
poor. Pathological techniques require complicated logis-
tics between the operating theatre and pathology de-
partments, sufficiently trained pathologists are a scarce
resource and time taken to report results can be long
and can delay operative workflow (24-50 minutes)
[54, 55]. Both SR and IOUS guided surgery can be
used directly by surgeons within the operating the-
atre; however neither technique is as accurate as
pathological approaches and both are subject to
intraobserver error [34]. A common limitation of all
emerging technologies such as MarginProbe™ [23,
24], ClearEdge™ [25] or OCT [30] is the need to dis-
rupt workflow demanding an additional probe during
resection or specimen analysis following resection.
Following excision, the exact orientation of the sur-
gical specimen can prove to be challenging and this
may affect accurate margin identification.

As a margin detection and optimisation device, the
REIMS-based iKnife has a significant advantage in that
there is no disruption to standard oncological workflow
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Fig. 7 Ex-vivo validation case study. An electrosurgical hand-piece was moved through the mastectomy specimen in coag mode from normal
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the specimen and the generated spectra and demonstrates good correlation with the recognition software compared to macroscopic findings
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because the margin control device is coupled to the
resection tool. Furthermore, results may be obtained fast
enough to alter tissue excision in real time and hence may
reduce problems with retrospective tissue orientation. Per-
haps the most exciting attribute of the iKnife is the ability
to compare chemical changes in cellular metabolism with

tissue morphology as determined by pathological assess-
ment. The iKnife is envisaged to be more than just an IMA
tool and has the potential to provide real time chemical
information about individual tumour biology, important in
an era of precision medicine as we move towards offering
bespoke treatments based on tumour/tissue biology [56].

100

100 Intraoperative 100 Intraoperative
Coag Cut
% U % J
0 sl. i o L l l\l I.(lwhhl J‘AL]A;
200 800 1400 200 800 1400
m/z m/z
100 Ex-vivo 100 Ex-vivo
Coag Cut
% ] % |
ll
0 i Al 1. 0 l Lo ull LA 4
200 800 1400 200 800 1400
m/z m/z

Fig. 8 Collection of intraoperative mass spectral data with comparison to ex-vivo spectra. Spectral intensity over time obtained throughout entire
surgery (14 minutes), one spectra obtained per second. Intraoperative spectral differences highlighted in cut (right) and coag (left) modalities
observed in normal tissue and compared to similar spectra observed in two ex-vivo examples
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Limitations

Due to the width of the electrosurgical blade (4 mm) the
iKnife has relatively low resolution that may lead to dilu-
tion of tumour cellular content by normal cells, which
may provoke a false positive result. REIMS is a destruc-
tive process, therefore it is impossible to be certain of
the histology of the exact cells under analysis. The need
to perform REIMS analysis on tissue prior to formalin
fixation and microscopic assessment limited the number
of cases of ductal carcinoma in situ (B5a) that were
available for inclusion. There is uncertainty about how
the iKnife will classify solid benign lesions. In a sub-set
analysis of tumour (B5b) versus fibroadenoma (B2)
(Additional file 6: Figure S3), good sensitivity (94.1%)
but poorer specificity (87.3%) was observed, indicating
that the spectral differences between these two groups
are subtler than comparisons between either of these
entities and normal tissue.

Conclusion

A mass spectrometric method for the rapid analysis of
heterogeneous breast tissues has been developed. REIMS
analysis can be performed in both the cut and coag
modes, which allows the surgeon to alternate between
modes as clinically necessary. Preliminary data suggest
the iKnife is capable of accurately separating breast
tissue types by interpretation of the cellular chemical
constituents. Recognition software enables real-time
analysis of both ex-vivo and in-vivo breast tissue. The
iKnife method has been optimised and further work will
focus on determining the accuracy of the tool for intra-
operative classification of resection margins.

Additional files

Additional file 1: Table S1. Ex-vivo database tumour characteristics
for samples included in the ex-vivo database. ER oestrogen
receptor, PR progesterone receptor, HER2 human epidermal
growth factor receptor 2 (DOCX 156 kb).

Additional file 2: Table S2. Inclusion and exclusion criteria for
construction of the histologically assigned spectral database; 40
specimen files were excluded from a total of 399, leaving 359

specimen files for analysis of normal tissue (B1 and B2) versus

tumour (B5a and B5b) (DOCX 44 kb).

Additional file 3: Figure S1. Multivariate statistical analysis of the cut
model. a Unsupervised principal component analysis (PCA) analysis of the
spectral differences (600-1000 m/z) between normal tissue compared to
breast cancer using the cut electrosurgical modality. b Supervised linear
discriminant analysis (LDA) plot comparing normal tissue to tumour
using cut mode. ¢ Confusion matrix demonstrating diagnostic accuracy
of the cut model, following leave-one-patient-out cross-validation, with
sensitivity (94.7%) and specificity (96.2%) (DOCX 367 kb).

Additional file 4: Figure S2. Multivariate statistical analysis of the
coag model. a Unsupervised PCA analysis of the spectral differences
(600-1000 m/z) between normal tissue compared to breast cancer
using coag electrosurgical modality. b Supervised LDA plot
comparing normal tissue to tumour using coag mode. ¢ Confusion
matrix demonstrating diagnostic accuracy of the coag model
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following leave-one-patient-out cross-validation, with sensitivity
(93.9%) and specificity (95.0%) (DOCX 332 kb).

Additional file 5: Table S3. Significant m/z peak differences in mean
intensity between normal tissue and cancer, with fold changes and
g value (false discovery rate (FDR)-corrected p value). Negative fold
changes denote peaks that are lower in tumour compared with
normal tissue (DOCX 48 kb).

Additional file 6: Figure S3. Multivariate statistical analysis of
fibroadenoma (B2) compared to cancer (B5b). a Unsupervised PCA
analysis of the spectral differences (600-1000 m/z) between
fibroadenoma samples compared to breast cancer using combined cut
and coag electrosurgical modalities. b Supervised LDA plot comparing
fibroadenoma to cancer using cut and coag modes. ¢ Confusion matrix
demonstrating diagnostic accuracy of the model: 55 solid fibroadenoma
samples are compared to 101 tumour (B5b) samples. Sensitivity of
tumour classification is high at 94.1% but specificity for the diagnosis of
benign fibroadenoma is lower at 87.3% (DOCX 364 kb).
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