544 research outputs found
Maize plants sprayed with either jasmonic acid or its precursor, methyl linolenate, attract armyworm parasitoids, but the composition of attractants differs
Treatment of both uninfested and armyworm-infested maize plants with jasmonic acid (JA) is known to attract the parasitic wasp, Cotesia kariyai Watanabe (Hymenoptera: Braconidae). Here, we show that treatment with a methyl ester of a JA precursor, methyl linolenate (MeLin), also causes maize plants to attract this wasp, yet does not cause elevated levels of endogenous JA. The volatile chemicals emitted from either infested or uninfested maize plants treated with MeLin were qualitatively and quantitatively different from those emitted from JA-treated plants. Among compounds emitted from MeLin-treated plants, α-pinene and menthol attracted wasps in pure form in a two-choice test using a choice chamber. A mixture of methyl salicylate, α-copaene, and β-myrcene also attracted wasps. In contrast, (Z)-3-hexenyl acetate was among the main attractants for C. kariyai in JA-treated plants. These data show that in addition to JA, MeLin also has the potential to increase the host-finding ability of C. kariyai, but that the composition of attractants they induce differs
Two-electronic component behavior in the multiband FeSeTe superconductor
We report X-band EPR and Te and Se NMR measurements on
single-crystalline superconducting FeSeTe ( = 11.5(1)
K). The data provide evidence for the coexistence of intrinsic localized and
itinerant electronic states. In the normal state, localized moments couple to
itinerant electrons in the Fe(Se,Te) layers and affect the local spin
susceptibility and spin fluctuations. Below , spin fluctuations become
rapidly suppressed and an unconventional superconducting state emerges in which
is reduced at a much faster rate than expected for conventional - or
-wave symmetry. We suggest that the localized states arise from the
strong electronic correlations within one of the Fe-derived bands. The
multiband electronic structure together with the electronic correlations thus
determine the normal and superconducting states of the FeSeTe
family, which appears much closer to other high- superconductors than
previously anticipated.Comment: 5 pages, 4 figure
Jahn-Teller orbital glass state in the expanded fcc Cs3C60 fulleride
The most expanded fcc-structured alkali fulleride, Cs3C60, is a Mott insulator at ambient pressure because of the weak overlap between the frontier t1u molecular orbitals of the C603− anions. It has a severely disordered antiferromagnetic ground state that becomes a superconductor with a high critical temperature, Tc of 35 K upon compression. The effect of the localised t1u3 electronic configuration on the properties of the material is not well-understood. Here we study the relationship between the intrinsic crystallographic C603− orientational disorder and the molecular Jahn–Teller (JT) effect dynamics in the Mott insulating state. The high-resolution 13C magic-angle-spinning (MAS) NMR spectrum at room temperature comprises three peaks in the intensity ratio 1:2:2 consistent with the presence of three crystallographically-inequivalent carbon sites in the fcc unit cell and revealing that the JT-effect dynamics are fast on the NMR time-scale of 10−5 s despite the presence of the frozen-in C603− merohedral disorder disclosed by the 133Cs MAS NMR fine splitting of the tetrahedral and octahedral 133Cs resonances. Cooling to sub-liquid-nitrogen temperatures leads to severe broadening of both the 13C and 133Cs MAS NMR multiplets, which provides the signature of an increased number of inequivalent 13C and 133Cs sites. This is attributed to the freezing out of the C603− JT dynamics and the development of a t1u electronic orbital glass state guided by the merohedral disorder of the fcc structure. The observation of the dynamic and static JT effect in the Mott insulating state of the metrically cubic but merohedrally disordered Cs3C60 fulleride in different temperature ranges reveals the intimate relation between charge localization, magnetic ground state, lifting of electronic degeneracy, and orientational disorder in these strongly-correlated systems
Spin frustration and magnetic ordering in theS=12molecular antiferromagnetfcc−Cs3C60
We have investigated the low-temperature magnetic state of face-centered-cubic (fcc) Cs3C60, a Mott insulator and the first molecular analog of a geometrically frustrated Heisenberg fcc antiferromagnet with S=1/2 spins. Specific heat studies reveal the presence of both long-range antiferromagnetic ordering and a magnetically disordered state below TN=2.2 K, which is in agreement with local probe experiments. These results together with the strongly suppressed TN are unexpected for conventional atom-based fcc antiferromagnets, implying that the fulleride molecular degrees of freedom give rise to the unique magnetic ground state
Diffracted diffraction radiation and its application to beam diagnostics
We present theoretical considerations for diffracted diffraction radiation and also propose an application of this process to diagnosing ultra-relativistic electron (positron) beams for the first tim
Hadron and Quark Form Factors in the Relativistic Harmonic Oscillator Model
Nucleon, pion and quark form factors are studied within the relativistic
harmonic oscillator model including the quark spin. It is shown that the
nucleon charge, magnetic and axial form factors and the pion charge form factor
can be explained with one oscillator parameter if one accounts for the scaling
rule and the size of the constituent quarks.Comment: 9 pages, Latex, 3 postscript figures, DFTT 8/9
Upper critical field reaches 90 tesla near the Mott transition in fulleride superconductors
分子からなる超伝導体が従来超伝導線材を凌駕する臨界磁場90テスラを達成 -分子性固体における超伝導材料開発の新たな指針-. 京都大学プレスリリース. 2017-02-20
Effects of Disorder in FeSe : An Ab Initio Study
Using the coherent-potential approximation, we have studied the effects of
excess Fe, Se-deficiency, and substitutions of S, Te on Se sub-lattice and Co,
Ni and Cu on Fe sub-lattice in FeSe. Our results show that (i) a small amount
of excess Fe substantially disorders the Fe-derived bands while Se-deficiency
affects mainly the Se-derived bands, (ii) the substitution of S or Te enhances
the possibility of Fermi surface nesting, specially in FeSeTe,
in spite of disordering the Se-derived bands, (iii) the electron doping through
Co, Ni or Cu disorders the system and pushes down the Fe-derived bands, thereby
destroying the possibility of Fermi surface nesting. A comparison of these
results with the rigid-band, virtual-crystal and supercell approximations
reveals the importance of describing disorder with the coherent-potential
approximation.Comment: Redone VCA calculations, and some minor changes. (Accepted for
publication in Journal of Physics:Condensed Matter
Magnetism and Charge Dynamics in Iron Pnictides
In a wide variety of materials, such as copper oxides, heavy fermions,
organic salts, and the recently discovered iron pnictides, superconductivity is
found in close proximity to a magnetically ordered state. The character of the
proximate magnetic phase is thus believed to be crucial for understanding the
differences between the various families of unconventional superconductors and
the mechanism of superconductivity. Unlike the AFM order in cuprates, the
nature of the magnetism and of the underlying electronic state in the iron
pnictide superconductors is not well understood. Neither density functional
theory nor models based on atomic physics and superexchange, account for the
small size of the magnetic moment. Many low energy probes such as transport,
STM and ARPES measured strong anisotropy of the electronic states akin to the
nematic order in a liquid crystal, but there is no consensus on its physical
origin, and a three dimensional picture of electronic states and its relations
to the optical conductivity in the magnetic state is lacking. Using a first
principles approach, we obtained the experimentally observed magnetic moment,
optical conductivity, and the anisotropy of the electronic states. The theory
connects ARPES, which measures one particle electronic states, optical
spectroscopy, probing the particle hole excitations of the solid and neutron
scattering which measures the magnetic moment. We predict a manifestation of
the anisotropy in the optical conductivity, and we show that the magnetic phase
arises from the paramagnetic phase by a large gain of the Hund's rule coupling
energy and a smaller loss of kinetic energy, indicating that iron pnictides
represent a new class of compounds where the nature of magnetism is
intermediate between the spin density wave of almost independent particles, and
the antiferromagnetic state of local moments.Comment: 4+ pages with additional one-page supplementary materia
- …