1,924 research outputs found

    Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach

    Get PDF
    Scalability is a crucial aspect of designing efficient algorithms. Despite their prevalence, large-scale dynamic optimization problems are not well-studied in the literature. This paper is concerned with designing benchmarks and frameworks for the study of large-scale dynamic optimization problems. We start by a formal analysis of the moving peaks benchmark and show its nonseparable nature irrespective of its number of peaks. We then propose a composite moving peaks benchmark suite with exploitable modularity covering a wide range of scalable partially separable functions suitable for the study of large-scale dynamic optimization problems. The benchmark exhibits modularity, heterogeneity, and imbalance features to resemble real-world problems. To deal with the intricacies of large-scale dynamic optimization problems, we propose a decomposition-based coevolutionary framework which breaks a large-scale dynamic optimization problem into a set of lower dimensional components. A novel aspect of the framework is its efficient bi-level resource allocation mechanism which controls the budget assignment to components and the populations responsible for tracking multiple moving optima. Based on a comprehensive empirical study on a wide range of large-scale dynamic optimization problems with up to 200 dimensions, we show the crucial role of problem decomposition and resource allocation in dealing with these problems. The experimental results clearly show the superiority of the proposed framework over three other approaches in solving large-scale dynamic optimization problems

    Benchmarking Continuous Dynamic Optimization: Survey and Generalized Test Suite

    Get PDF
    Dynamic changes are an important and inescapable aspect of many real-world optimization problems. Designing algorithms to find and track desirable solutions while facing challenges of dynamic optimization problems is an active research topic in the field of swarm and evolutionary computation. To evaluate and compare the performance of algorithms, it is imperative to use a suitable benchmark that generates problem instances with different controllable characteristics. In this paper, we give a comprehensive review of existing benchmarks and investigate their shortcomings in capturing different problem features. We then propose a highly configurable benchmark suite, the generalized moving peaks benchmark, capable of generating problem instances whose components have a variety of properties such as different levels of ill-conditioning, variable interactions, shape, and complexity. Moreover, components generated by the proposed benchmark can be highly dynamic with respect to the gradients, heights, optimum locations, condition numbers, shapes, complexities, and variable interactions. Finally, several well-known optimizers and dynamic optimization algorithms are chosen to solve generated problems by the proposed benchmark. The experimental results show the poor performance of the existing methods in facing new challenges posed by the addition of new properties

    Phase II study of bevacizumab and erlotinib in the treatment of advanced hepatocellular carcinoma patients with sorafenib-refractory disease

    Get PDF
    Background The combination of bevacizumab (B) and erlotinib (E) has shown promising clinical outcomes as the first-line treatment of advanced HCC patients. We aimed to evaluate the efficacy and safety of using combination of B + E in treating advanced HCC patients who had failed prior sorafenib treatment. Methods Eligible advanced HCC patients with documented radiological evidence of disease progression with sorafenib treatment were recruited. All patients received bevacizumab(B) at 10 mg/kg every 2 weeks with erlotinib(E) at 150 mg daily for a maximum of 6 cycles. Response assessments using both RECIST and modified RECIST criteria were performed after every 6 weeks. The primary endpoint was clinical benefit (CB) rate and a Simon two-stage design was employed. Results The trial was halted in the first stage according to the pre-set statistical criteria with 10 patients recruited. The median age was 47 years (range, 28-61) and all patients were in ECOG performance status 1. Eighty percent of patients were chronic hepatitis B carriers and all patients had Child A cirrhosis. Among these 10 patients, none of the enrolled patients achieved response or stable disease. The median time-to-progression was 1.81 months (95 % confidence interval [C.I.], 1.08-1.74 months) and overall survival was 4.37 months (95 % C.I., 1.08-11.66 months). Rash (70 %), diarrhea (50 %) and malaise (40 %) were the most commonly encountered toxicities. Conclusion The combination of B + E was well tolerated but had no activity in an unselected sorafenib-refractory advanced HCC population. Condensed abstract The combination of bevacizumab and erlotinib had no clinical activity in sorafenib-refractory HCC population. © 2012 The Author(s).published_or_final_versio

    Action de l’acide phosphoreux in vitro sur Phytophthora katsurae (Pythiaceae), parasite du cocotier en Côte d’Ivoire

    Get PDF
    Lfaction in vitro de lfacide phosphoreux sur quatre souches de Phytophthora katsurae provenant de trois regions Sud de production du cocotier en Cote dfIvoire a ete evaluee. Lfetude fongitoxique de lfacide phosphoreux et la capacite de redeveloppement des souches ont ete respectivement realisees sur milieu Ribeiro modifie, amende avec les concentrations 15, 20, 25, 30, 40 et 50 ƒÊg/ml dfacide phosphoreux et avec 15 et 50 ƒÊg/ml du meme acide. Les croissances myceliennes sur milieux amendes a lfacide phosphoreux ont ete comparees aux croissances des champignons sur milieux Ribeiro ne contenant pas de lfacide phosphoreux. Lfactivite fongitoxique de lfacide phosphoreux sfest traduite par des taux dfinhibition compris entre 36,45% et74,64%. Les souches du Sud Comoe issues dfune plantation villageoise de Samo et dfune plantation industrielle CAIMPEX, sont plus sensibles a lfacide, contrairement aux souches de Marc Delorme et Fresco.Les essais realises ont montre egalement que in vitro, les souches sont capables de se redevelopper a lfabsence du fongicide. Cette etude a mis en evidence une activite fongistatique de lfacide phosphoreux. Ces differents comportements pourraient permettre lfoptimisation de la lutte chimique dans toutes les zones de production de la Cote dfIvoire

    Giant schwannoma of thoracic vertebra: A case report

    Get PDF
    BACKGROUND,It is relatively rare for schwannomas to invade bone, but it is very rare for a large,mass to form concurrently in the paravertebral region. Surgical resection is the,only effective treatment. Because of the extensive tumor involvement and the,many important surrounding structures, the tumor needs to be fully exposed.,Most of the tumors are completely removed by posterior combined open-heart,surgery to relieve spinal cord compression, restore the stability of the spine and,maximize the recovery of nerve and spinal cord function. The main objective of,this article is to present a schwannoma that had invaded the T5 and T6 vertebral,bodies and formed a large paravertebral mass with simultaneous invasion of the,spinal canal and compression of the spinal cord.,CASE SUMMARY,A 40-year-old female suffered from intermittent chest and back pain for 8 years.,Computed tomography and magnetic resonance imaging scans showed a,paravertebral tumor of approximately 86 mm × 109 mm × 116 mm, where the,adjacent T5 and T6 vertebral bodies were invaded by the tumor, the right intervertebral,foramen was enlarged, and the tumor had invaded the spinal canal to,compress the thoracic medulla. The preoperative puncture biopsy diagnosed a,benign schwannoma. Complete resection of the tumor was achieved by a two-step,operation. In the first step, the thoracic surgeon adopted a lateral approach to,separate the thoracic tumor from the lung. In the second step, a spine surgeon,performed a posterior midline approach to dissect the tumor from the vertebral,junction through removal of the tumor from the posterior side and further,resection of the entire T5 and T6 vertebral bodies. The large bone defect was,reconstructed with titanium mesh, and the posterior root arch was nail-fixed. Due,to the large amount of intraoperative bleeding, we performed tumor angioembolization,before surgery to reduce and avoid large intraoperative bleeding. The,postoperative diagnosis of benign schwannoma was confirmed by histochemical,examination. There was no sign of tumor recurrence or spinal instability during,the 2-year follow-up.,CONCLUSION,Giant schwannoma is uncommon. In this case, a complete surgical resection of a,giant thoracic nerve sheath tumor that invaded part of the vertebral body and,compressed the spinal cord was safe and effective

    Influence of the dimensions of spheroniser plate protuberances on the production of pellets by extrusion-spheronisation

    Get PDF
    This study systematically investigated the influence of the dimensions of square-patterned pyramidal protuberances on a spheronisation plate on pellet yield, size and shape distributions, surface tensile strength and surface morphology was investigated using a 45 wt% microcrystalline cellulose/ water paste. Tests were conducted using four different extrudate diameters (1.0, 1.5, 2.0 and 2.5 mm) generated by screen extrusion and seven plate geometries, including a flat plate as a control, allowing the relative size of extrudate to protuberance feature to be studied. Geometrical analyses of the protuberance shapes provide some insight into the observed differences, with protuberance angle being significant in many cases. Sharper protuberances reduced yield (promoting breakage and attrition) but tended to give narrower size distributions and more uneven pellet surface. Pellet yield for 1 mm extrudates was also subject to losses caused by fragments passing through the 1.0 mm gap between the plate and spheroniser wall. Pellet tensile strength was noticeably greater for 1.0 mm diameter extrudates, which is attributed to the greater extensional strain imparted on the paste during the extrusion step. For some geometries there is an optimal ratio of extrudate to protuberance dimensions

    Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach

    Get PDF
    Scalability is a crucial aspect of designing efficient algorithms. Despite their prevalence, large-scale dynamic optimization problems are not well-studied in the literature. This paper is concerned with designing benchmarks and frameworks for the study of large-scale dynamic optimization problems. We start by a formal analysis of the moving peaks benchmark and show its nonseparable nature irrespective of its number of peaks. We then propose a composite moving peaks benchmark suite with exploitable modularity covering a wide range of scalable partially separable functions suitable for the study of largescale dynamic optimization problems. The benchmark exhibits modularity, heterogeneity, and imbalance features to resemble real-world problems. To deal with the intricacies of large-scale dynamic optimization problems, we propose a decompositionbased coevolutionary framework which breaks a large-scale dynamic optimization problem into a set of lower dimensional components. A novel aspect of the framework is its efficient bilevel resource allocation mechanism which controls the budget assignment to components and the populations responsible for tracking multiple moving optima. Based on a comprehensive empirical study on a wide range of large-scale dynamic optimization problems with up to 200 dimensions, we show the crucial role of problem decomposition and resource allocation in dealing with these problems. The experimental results clearly show the superiority of the proposed framework over three other approaches in solving large-scale dynamic optimization problems

    Robust Optimization Over Time: A Critical Review

    Get PDF
    Robust optimization over time (ROOT) is the combination of robust optimization and dynamic optimization. In ROOT, frequent changes to deployed solutions are undesirable, which can be due to the high cost of switching between deployed solutions, limitations on the resources required to deploy new solutions, and/or the system’s inability to tolerate frequent changes in the deployed solutions. ROOT is dedicated to the study and development of algorithms capable of dealing with the implications of deploying or maintaining solutions over longer time horizons involving multiple environmental changes. This paper presents an in-depth review of the research on ROOT. The overarching aim of this survey is to help researchers gain a broad perspective on the current state of the field, what has been achieved so far, and the existing challenges and pitfalls. This survey also aims to improve accessibility and clarity by standardizing terminology and unifying mathematical notions used across the field, providing explicit mathematical formulations of definitions, and improving many existing mathematical descriptions. Moreover, we classify ROOT problems based on two ROOT-specific criteria: the requirements for changing or keeping deployed solutions and the number of deployed solutions. This classification helps researchers gain a better understanding of the characteristics and requirements of ROOT problems, which is crucial to systematic algorithm design and benchmarking. Additionally, we classify ROOT methods based on the approach they use for finding robust solutions and provide a comprehensive review of them. This survey also reviews ROOT benchmarks and performance indicators. Finally, we identify several future research directions
    corecore