92 research outputs found
Cytolytic DNA vaccine encoding lytic perforin augments the maturation of- and antigen presentation by- dendritic cells in a time-dependent manner
The use of cost-effective vaccines capable of inducing robust CD8+ T cell immunity will contribute significantly towards the elimination of persistent viral infections and cancers worldwide. We have previously reported that a cytolytic DNA vaccine encoding an immunogen and a truncated mouse perforin (PRF) protein significantly augments anti-viral T cell (including CD8+ T cell) immunity. Thus, the current study investigated whether this vaccine enhances activation of dendritic cells (DCs) resulting in greater priming of CD8+ T cell immunity. In vitro data showed that transfection of HEK293T cells with the cytolytic DNA resulted in the release of lactate dehydrogenase, indicative of necrotic/lytic cell death. In vitro exposure of this lytic cell debris to purified DCs from naïve C57BL/6 mice resulted in maturation of DCs as determined by up-regulation of CD80/CD86. Using activation/proliferation of adoptively transferred OT-I CD8+ T cells to measure antigen presentation by DCs in vivo, it was determined that cytolytic DNA immunisation resulted in a time-dependent increase in the proliferation of OT-I CD8+ T cells compared to canonical DNA immunisation. Overall, the data suggest that the cytolytic DNA vaccine increases the activity of DCs which has important implications for the design of DNA vaccines to improve their translational prospects.Danushka K. Wijesundara, Wenbo Yu, Ben J. C. Quah, Preethi Eldi, John D. Hayball, Kerrilyn R. Diener, Ilia Voskoboinik, Eric J. Gowans, and Branka Grubor-Bau
Physical Fitness and Telomere Length in Patients with Coronary Heart Disease: Findings from the Heart and Soul Study
Background: Short telomere length (TL) is an independent predictor of mortality in patients with coronary heart disease (CHD). However, the relationship between physical fitness and TL has not been explored in these patients. Methods: In a cross sectional study of 944 outpatients with stable CHD, we performed exercise treadmill testing, assessed self-reported physical activity, and measured leukocyte TL using a quantitative PCR assay. We used generalized linear models to calculate mean TL (T/S ratio), and logistic regression models to compare the proportion of patients with short TL (defined as the lowest quartile), among participants with low, medium and high physical fitness, based on metabolic equivalent tasks achieved (METs). Results: 229 participants had low physical fitness (,5 METS), 334 had moderate physical fitness (5–7 METS), and 381 had high physical fitness (.7 METS). Mean6 T/S ratio ranged from 0.8660.21 (534963781 base pairs) in those with low physical fitness to 0.9560.23 (556663829 base pairs) in those with high physical fitness (p,.001). This association remained strong after adjustment for numerous patient characteristics, including measures of cardiac disease severity and physical inactivity (p = 0.005). Compared with participants with high physical fitness, those with low physical fitness had 2-fold greater odds o
Effect of Levels of Acetate on the Mevalonate Pathway of Borrelia burgdorferi
Borrelia burgdorferi, the agent of Lyme disease, is a spirochetal pathogen with limited metabolic capabilities that survives under highly disparate host-specific conditions. However, the borrelial genome encodes several proteins of the mevalonate pathway (MP) that utilizes acetyl-CoA as a substrate leading to intermediate metabolites critical for biogenesis of peptidoglycan and post-translational modifications of proteins. In this study, we analyzed the MP and contributions of acetate in modulation of adaptive responses in B. burgdorferi. Reverse-transcription PCR revealed that components of the MP are transcribed as individual open reading frames. Immunoblot analysis using monospecific sera confirmed synthesis of members of the MP in B. burgdorferi. The rate-limiting step of the MP is mediated by HMG-CoA reductase (HMGR) via conversion of HMG-CoA to mevalonate. Recombinant borrelial HMGR exhibited a Km value of 132 µM with a Vmax of 1.94 µmol NADPH oxidized minute−1 (mg protein)−1 and was inhibited by statins. Total protein lysates from two different infectious, clonal isolates of B. burgdorferi grown under conditions that mimicked fed-ticks (pH 6.8/37°C) exhibited increased levels of HMGR while other members of the MP were elevated under unfed-tick (pH 7.6/23°C) conditions. Increased extra-cellular acetate gave rise to elevated levels of MP proteins along with RpoS, CsrABb and their respective regulons responsible for mediating vertebrate host-specific adaptation. Both lactone and acid forms of two different statins inhibited growth of B. burgdorferi strain B31, while overexpression of HMGR was able to partially overcome that inhibition. In summary, these studies on MP and contributions of acetate to host-specific adaptation have helped identify potential metabolic targets that can be manipulated to reduce the incidence of Lyme disease
Signal transduction underlying the control of urinary bladder smooth muscle tone by muscarinic receptors and β-adrenoceptors
The normal physiological contraction of the urinary bladder, which is required for voiding, is predominantly mediated by muscarinic receptors, primarily the M3 subtype, with the M2 subtype providing a secondary backup role. Bladder relaxation, which is required for urine storage, is mediated by β-adrenoceptors, in most species involving a strong β3-component. An excessive stimulation of contraction or a reduced relaxation of the detrusor smooth muscle during the storage phase of the micturition cycle may contribute to bladder dysfunction known as the overactive bladder. Therefore, interference with the signal transduction of these receptors may be a viable approach to develop drugs for the treatment of overactive bladder. The prototypical signaling pathway of M3 receptors is activation of phospholipase C (PLC), and this pathway is also activated in the bladder. Nevertheless, PLC apparently contributes only in a very minor way to bladder contraction. Rather, muscarinic-receptor-mediated bladder contraction involves voltage-operated Ca2+ channels and Rho kinase. The prototypical signaling pathway of β-adrenoceptors is an activation of adenylyl cyclase with the subsequent formation of cAMP. Nevertheless, cAMP apparently contributes in a minor way only to β-adrenoceptor-mediated bladder relaxation. BKCa channels may play a greater role in β-adrenoceptor-mediated bladder relaxation. We conclude that apart from muscarinic receptor antagonists and β-adrenoceptor agonists, inhibitors of Rho kinase and activators of BKCa channels may have potential to treat an overactive bladder
Mitophagy plays a central role in mitochondrial ageing
The mechanisms underlying ageing have been discussed for decades, and advances in molecular and cell biology of the last three decades have accelerated research in this area. Over this period, it has become clear that mitochondrial function, which plays a major role in many cellular pathways from ATP production to nuclear gene expression and epigenetics alterations, declines with age. The emerging concepts suggest novel mechanisms, involving mtDNA quality, mitochondrial dynamics or mitochondrial quality control. In this review, we discuss the impact of mitochondria in the ageing process, the role of mitochondria in reactive oxygen species production, in nuclear gene expression, the accumulation of mtDNA damage and the importance of mitochondrial dynamics and recycling. Declining mitophagy (mitochondrial quality control) may be an important component of human ageing
Acute exercise leads to regulation of Telomere-Associated genes and MicroRNA expression in immune Cells
Telomeres are specialized nucleoprotein structures that protect chromosomal ends from degradation. These structures progressively shorten during cellular division and can signal replicative senescence below a critical length. Telomere length is predominantly maintained by the enzyme telomerase. Significant decreases in telomere length and telomerase activity are associated with a host of chronic diseases; conversely their maintenance underpins the optimal function of the adaptive immune system. Habitual physical activity is associated with longer leukocyte telomere length; however, the precise mechanisms are unclear. Potential hypotheses include regulation of telomeric gene transcription and/or microRNAs (miRNAs). We investigated the acute exercise-induced response of telomeric genes and miRNAs in twenty-two healthy males (mean age = 24.1±1.55 years). Participants undertook 30 minutes of treadmill running at 80% of peak oxygen uptake. Blood samples were taken before exercise, immediately post-exercise and 60 minutes post-exercise. Total RNA from white blood cells was submitted to miRNA arrays and telomere extension mRNA array. Results were individually validated in white blood cells and sorted T cell lymphocyte subsets using quantitative real-time PCR (qPCR). Telomerase reverse transcriptase (TERT) mRNA (P = 0.001) and sirtuin-6 (SIRT6) (P<0.05) mRNA expression were upregulated in white blood cells after exercise. Fifty-six miRNAs were also differentially regulated post-exercise (FDR <0.05). In silico analysis identified four miRNAs (miR-186, miR-181, miR-15a and miR-96) that potentially targeted telomeric gene mRNA. The four miRNAs exhibited significant upregulation 60 minutes post-exercise (P<0.001). Telomeric repeat binding factor 2, interacting protein (TERF2IP) was identified as a potential binding target for miR-186 and miR-96 and demonstrated concomitant downregulation (P<0.01) at the corresponding time point. Intense cardiorespiratory exercise was sufficient to differentially regulate key telomeric genes and miRNAs in white blood cells. These results may provide a mechanistic insight into telomere homeostasis and improved immune function and physical health. Funding NHMR
Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes.
UNLABELLED: A subgroup of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins (PFTs) has an unusually narrow host range due to a requirement for binding to human CD59 (hCD59), a glycosylphosphatidylinositol (GPI)-linked complement regulatory molecule. hCD59-specific CDCs are produced by several organisms that inhabit human mucosal surfaces and can act as pathogens, including Gardnerella vaginalis and Streptococcus intermedius. The consequences and potential selective advantages of such PFT host limitation have remained unknown. Here, we demonstrate that, in addition to species restriction, PFT ligation of hCD59 triggers a previously unrecognized pathway for programmed necrosis in primary erythrocytes (red blood cells [RBCs]) from humans and transgenic mice expressing hCD59. Because they lack nuclei and mitochondria, RBCs have typically been thought to possess limited capacity to undergo programmed cell death. RBC programmed necrosis shares key molecular factors with nucleated cell necroptosis, including dependence on Fas/FasL signaling and RIP1 phosphorylation, necrosome assembly, and restriction by caspase-8. Death due to programmed necrosis in RBCs is executed by acid sphingomyelinase-dependent ceramide formation, NADPH oxidase- and iron-dependent reactive oxygen species formation, and glycolytic formation of advanced glycation end products. Bacterial PFTs that are hCD59 independent do not induce RBC programmed necrosis. RBC programmed necrosis is biochemically distinct from eryptosis, the only other known programmed cell death pathway in mature RBCs. Importantly, RBC programmed necrosis enhances the growth of PFT-producing pathogens during exposure to primary RBCs, consistent with a role for such signaling in microbial growth and pathogenesis. IMPORTANCE: In this work, we provide the first description of a new form of programmed cell death in erythrocytes (RBCs) that occurs as a consequence of cellular attack by human-specific bacterial toxins. By defining a new RBC death pathway that shares important components with necroptosis, a programmed necrosis module that occurs in nucleated cells, these findings expand our understanding of RBC biology and RBC-pathogen interactions. In addition, our work provides a link between cholesterol-dependent cytolysin (CDC) host restriction and promotion of bacterial growth in the presence of RBCs, which may provide a selective advantage to human-associated bacterial strains that elaborate such toxins and a potential explanation for the narrowing of host range observed in this toxin family
- …