327 research outputs found
STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL
The cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the ATP binding cassette (ABC) transporter superfamily but functions as an anion channel crucial for salt and water transport across epithelial cells. CFTR dysfunction, because of mutations, causes cystic fibrosis (CF). The anion-selective pore of the CFTR protein is formed by its two transmembrane domains (TMDs) and regulated by its cytosolic domains: two nucleotide binding domains (NBDs) and a regulatory (R) domain. Channel activation requires phosphorylation of the R domain by cAMP-dependent protein kinase (PKA), and pore opening and closing (gating) of phosphorylated channels is driven by ATP binding and hydrolysis at the NBDs. This review summarizes available information on structure and mechanism of the CFTR protein, with a particular focus on atomic-level insight gained from recent cryo-electron microscopic structures and on the molecular mechanisms of channel gating and its regulation. The pharmacological mechanisms of small molecules targeting CFTR's ion channel function, aimed at treating patients suffering from CF and other diseases, are briefly discussed
Maternal corticotropin-releasing hormone is associated with LEP DNA methylation at birth and in childhood: an epigenome-wide study in Project Viva
BackgroundCorticotropin-releasing hormone (CRH) plays a central role in regulating the secretion of cortisol which controls a wide range of biological processes. Fetuses overexposed to cortisol have increased risks of disease in later life. DNA methylation may be the underlying association between prenatal cortisol exposure and health effects. We investigated associations between maternal CRH levels and epigenome-wide DNA methylation of cord blood in offsprings and evaluated whether these associations persisted into mid-childhood.MethodsWe investigated mother-child pairs enrolled in the prospective Project Viva pre-birth cohort. We measured DNA methylation in 257 umbilical cord blood samples using the HumanMethylation450 Bead Chip. We tested associations of maternal CRH concentration with cord blood cells DNA methylation, adjusting the model for maternal age at enrollment, education, maternal race/ethnicity, maternal smoking status, pre-pregnancy body mass index, parity, gestational age at delivery, child sex, and cell-type composition in cord blood. We further examined the persistence of associations between maternal CRH levels and DNA methylation in children's blood cells collected at mid-childhood (n = 239, age: 6.7-10.3 years) additionally adjusting for the children's age at blood drawn.ResultsMaternal CRH levels are associated with DNA methylation variability in cord blood cells at 96 individual CpG sites (False Discovery Rate <0.05). Among the 96 CpG sites, we identified 3 CpGs located near the LEP gene. Regional analyses confirmed the association between maternal CRH and DNA methylation near LEP. Moreover, higher maternal CRH levels were associated with higher blood-cell DNA methylation of the promoter region of LEP in mid-childhood (P < 0.05, β = 0.64, SE = 0.30).ConclusionIn our cohort, maternal CRH was associated with DNA methylation levels in newborns at multiple loci, notably in the LEP gene promoter. The association between maternal CRH and LEP DNA methylation levels persisted into mid-childhood
A Few Bad Apples:A Model of Disease Influenced Agent Behaviour in a Heterogeneous Contact Environment
For diseases that infect humans or livestock, transmission dynamics are at least partially dependent on human activity and therefore human behaviour. However, the impact of human behaviour on disease transmission is relatively understudied, especially in the context of heterogeneous contact structures such as described by a social network. Here, we use a strategic game, coupled with a simple disease model, to investigate how strategic agent choices impact the spread of disease over a contact network. Using beliefs that are based on disease status and that build up over time, agents choose actions that stochastically determine disease spread on the network. An agent’s disease status is therefore a function of both his own and his neighbours actions. The effect of disease on agents is modelled by a heterogeneous payoff structure. We find that the combination of network shape and distribution of payoffs has a non-trivial impact on disease prevalence, even if the mean payoff remains the same. An important scenario occurs when a small percentage (called noncooperators) have little incentive to avoid disease. For diseases that are easily acquired when taking a risk, then even when good behavior can lead to disease eradication, a small increase in the percentage of noncooperators (less than 5%) can yield a large (up to 25%) increase in prevalence
Early mortality experience in a large military cohort and a comparison of mortality data sources
<p>Abstract</p> <p>Background</p> <p>Complete and accurate ascertainment of mortality is critically important in any longitudinal study. Tracking of mortality is particularly essential among US military members because of unique occupational exposures (e.g., worldwide deployments as well as combat experiences). Our study objectives were to describe the early mortality experience of Panel 1 of the Millennium Cohort, consisting of participants in a 21-year prospective study of US military service members, and to assess data sources used to ascertain mortality.</p> <p>Methods</p> <p>A population-based random sample (n = 256,400) of all US military service members on service rosters as of October 1, 2000, was selected for study recruitment. Among this original sample, 214,388 had valid mailing addresses, were not in the pilot study, and comprised the group referred to in this study as the invited sample. Panel 1 participants were enrolled from 2001 to 2003, represented all armed service branches, and included active-duty, Reserve, and National Guard members. Crude death rates, as well as age- and sex-adjusted overall and age-adjusted, category-specific death rates were calculated and compared for participants (n = 77,047) and non-participants (n = 137,341) based on data from the Social Security Administration Death Master File, Department of Veterans Affairs (VA) files, and the Department of Defense Medical Mortality Registry, 2001-2006. Numbers of deaths identified by these three data sources, as well as the National Death Index, were compared for 2001-2004.</p> <p>Results</p> <p>There were 341 deaths among the participants for a crude death rate of 80.7 per 100,000 person-years (95% confidence interval [CI]: 72.2,89.3) compared to 820 deaths and a crude death rate of 113.2 per 100,000 person-years (95% CI: 105.4, 120.9) for non-participants. Age-adjusted, category-specific death rates highlighted consistently higher rates among study non-participants. Although there were advantages and disadvantages for each data source, the VA mortality files identified the largest number of deaths (97%).</p> <p>Conclusions</p> <p>The difference in crude and adjusted death rates between Panel 1 participants and non-participants may reflect healthier segments of the military having the opportunity and choosing to participate. In our study population, mortality information was best captured using multiple data sources.</p
Symbionts as Major Modulators of Insect Health: Lactic Acid Bacteria and Honeybees
Lactic acid bacteria (LAB) are well recognized beneficial host-associated members of the microbiota of humans and animals. Yet LAB-associations of invertebrates have been poorly characterized and their functions remain obscure. Here we show that honeybees possess an abundant, diverse and ancient LAB microbiota in their honey crop with beneficial effects for bee health, defending them against microbial threats. Our studies of LAB in all extant honeybee species plus related apid bees reveal one of the largest collections of novel species from the genera Lactobacillus and Bifidobacterium ever discovered within a single insect and suggest a long (>80 mya) history of association. Bee associated microbiotas highlight Lactobacillus kunkeei as the dominant LAB member. Those showing potent antimicrobial properties are acquired by callow honey bee workers from nestmates and maintained within the crop in biofilms, though beekeeping management practices can negatively impact this microbiota. Prophylactic practices that enhance LAB, or supplementary feeding of LAB, may serve in integrated approaches to sustainable pollinator service provision. We anticipate this microbiota will become central to studies on honeybee health, including colony collapse disorder, and act as an exemplar case of insect-microbe symbiosis
Signaling from β1- and β2-adrenergic receptors is defined by differential interactions with PDE4
β1- and β2-adrenergic receptors (βARs) are highly homologous, yet they play clearly distinct roles in cardiac physiology and pathology. Myocyte contraction, for instance, is readily stimulated by β1AR but not β2AR signaling, and chronic stimulation of the two receptors has opposing effects on myocyte apoptosis and cell survival. Differences in the assembly of macromolecular signaling complexes may explain the distinct biological outcomes. Here, we demonstrate that β1AR forms a signaling complex with a cAMP-specific phosphodiesterase (PDE) in a manner inherently different from a β2AR/β-arrestin/PDE complex reported previously. The β1AR binds a PDE variant, PDE4D8, in a direct manner, and occupancy of the receptor by an agonist causes dissociation of this complex. Conversely, agonist binding to the β2AR is a prerequisite for the recruitment of a complex consisting of β-arrestin and the PDE4D variant, PDE4D5, to the receptor. We propose that the distinct modes of interaction with PDEs result in divergent cAMP signals in the vicinity of the two receptors, thus, providing an additional layer of complexity to enforce the specificity of β1- and β2-adrenoceptor signaling
Reduced Neutrophil Apoptosis in Diabetic Mice during Staphylococcal Infection Leads to Prolonged Tnfα Production and Reduced Neutrophil Clearance
Diabetes is a frequent underlying medical condition among individuals with Staphylococcus aureus infections, and diabetic patients often suffer from chronic inflammation and prolonged infections. Neutrophils are the most abundant inflammatory cells during the early stages of bacterial diseases, and previous studies have reported deficiencies in neutrophil function in diabetic hosts. We challenged age-matched hyperglycemic and normoglycemic NOD mice intraperitoneally with S. aureus and evaluated the fate of neutrophils recruited to the peritoneal cavity. Neutrophils were more abundant in the peritoneal fluids of infected diabetic mice by 48 h after bacterial inoculation, and they showed prolonged viability ex vivo compared to neutrophils from infected nondiabetic mice. These differences correlated with reduced apoptosis of neutrophils from diabetic mice and were dependent upon the presence of S. aureus and a functional neutrophil respiratory burst. Decreased apoptosis correlated with impaired clearance of neutrophils by macrophages both in vitro and in vivo and prolonged production of proinflammatory tumor necrosis factor alpha by neutrophils from diabetic mice. Our results suggest that defects in neutrophil apoptosis may contribute to the chronic inflammation and the inability to clear staphylococcal infections observed in diabetic patients
Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters
Recent progress in studies of globular clusters has shown that they are not
simple stellar populations, being rather made of multiple generations. Evidence
stems both from photometry and spectroscopy. A new paradigm is then arising for
the formation of massive star clusters, which includes several episodes of star
formation. While this provides an explanation for several features of globular
clusters, including the second parameter problem, it also opens new
perspectives about the relation between globular clusters and the halo of our
Galaxy, and by extension of all populations with a high specific frequency of
globular clusters, such as, e.g., giant elliptical galaxies. We review progress
in this area, focusing on the most recent studies. Several points remain to be
properly understood, in particular those concerning the nature of the polluters
producing the abundance pattern in the clusters and the typical timescale, the
range of cluster masses where this phenomenon is active, and the relation
between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review
Multicenter Evaluation of a Novel Surveillance Paradigm for Complications of Mechanical Ventilation
Ventilator-associated pneumonia (VAP) surveillance is time consuming, subjective, inaccurate, and inconsistently predicts outcomes. Shifting surveillance from pneumonia in particular to complications in general might circumvent the VAP definition's subjectivity and inaccuracy, facilitate electronic assessment, make interfacility comparisons more meaningful, and encourage broader prevention strategies. We therefore evaluated a novel surveillance paradigm for ventilator-associated complications (VAC) defined by sustained increases in patients' ventilator settings after a period of stable or decreasing support.We assessed 600 mechanically ventilated medical and surgical patients from three hospitals. Each hospital contributed 100 randomly selected patients ventilated 2-7 days and 100 patients ventilated >7 days. All patients were independently assessed for VAP and for VAC. We compared incidence-density, duration of mechanical ventilation, intensive care and hospital lengths of stay, hospital mortality, and time required for surveillance for VAP and for VAC. A subset of patients with VAP and VAC were independently reviewed by a physician to determine possible etiology.Of 597 evaluable patients, 9.3% had VAP (8.8 per 1,000 ventilator days) and 23% had VAC (21.2 per 1,000 ventilator days). Compared to matched controls, both VAP and VAC prolonged days to extubation (5.8, 95% CI 4.2-8.0 and 6.0, 95% CI 5.1-7.1 respectively), days to intensive care discharge (5.7, 95% CI 4.2-7.7 and 5.0, 95% CI 4.1-5.9), and days to hospital discharge (4.7, 95% CI 2.6-7.5 and 3.0, 95% CI 2.1-4.0). VAC was associated with increased mortality (OR 2.0, 95% CI 1.3-3.2) but VAP was not (OR 1.1, 95% CI 0.5-2.4). VAC assessment was faster (mean 1.8 versus 39 minutes per patient). Both VAP and VAC events were predominantly attributable to pneumonia, pulmonary edema, ARDS, and atelectasis.Screening ventilator settings for VAC captures a similar set of complications to traditional VAP surveillance but is faster, more objective, and a superior predictor of outcomes
- …