31 research outputs found

    Smoking cessation, alcohol intake and transient increase in the risk of metabolic syndrome among Japanese smokers at one health checkup institution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic syndrome (MetS) is potentially effective measures to identify individuals at risk of coronary heart disease (CHD) and type 2 diabetes. To verify the hypothesis that smoking cessation may increase the risk of MetS, a follow-up study taking drinking habit into account was conducted for the examinees at one health checkup institution.</p> <p>Methods</p> <p>Subjects were the examinees who visited the Institution for Disease Prevention and Health Checkup, Seirei Mikatabara Hospital for annual health checkup from January 2003 to December 2006. Among them, 5,872 smokers (5,479 men, 93.3%) free from MetS at the first year in two consecutive years were selected. For the long term follow-up, the risk of MetS among those who maintained their nonsmoking status for 1 or 2 additional years was evaluated.</p> <p>Results</p> <p>Relative to non-quitters, quitters showed a significantly elevated adjusted hazard ratio (aHR) of MetS in two consecutive years (aHR = 2.09, 95% confidence interval: 1.43–3.04, <it>P </it>< 0.001). The aHR was higher among the quitters who had a drinking habit at the first year (aHR = 2.42, 95% CI: 1.48–3.94, <it>P </it>< 0.001). Analyses for 1 or 2 additional years of follow-up revealed that this significant increase in risk of MetS was transient.</p> <p>Conclusion</p> <p>The present study revealed that smoking cessation elevated the risk of MetS significantly, especially among drinkers. Although this detrimental effect of smoking cessation was found to be during only a short term, our results suggested that we should take measures, presumably including interventions for alcohol cessation, not to expose smoking quitters to this adverse effect. Further investigations are required to confirm our findings.</p

    Towards reconciling structure and function in the nuclear pore complex

    Get PDF
    The spatial separation between the cytoplasm and the cell nucleus necessitates the continuous exchange of macromolecular cargo across the double-membraned nuclear envelope. Being the only passageway in and out of the nucleus, the nuclear pore complex (NPC) has the principal function of regulating the high throughput of nucleocytoplasmic transport in a highly selective manner so as to maintain cellular order and function. Here, we present a retrospective review of the evidence that has led to the current understanding of both NPC structure and function. Looking towards the future, we contemplate on how various outstanding effects and nanoscopic characteristics ought to be addressed, with the goal of reconciling structure and function into a single unified picture of the NPC

    Ten principles of heterochromatin formation and function

    Get PDF

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    The RFTS Domain of Raf2 Is Required for Cul4 Interaction and Heterochromatin Integrity in Fission Yeast.

    Get PDF
    Centromeric heterochromatin assembly in fission yeast is critical for faithful chromosome segregation at mitosis. Its assembly requires a concerted pathway of events whereby the RNA interference (RNAi) pathway guides H3K9 methylation to target sequences. H3K9 methylation, a hallmark of heterochromatin structure, is mediated by the single histone methyltransferase Clr4 (equivalent to metazoan Suv3-9), a component of the CLRC complex. Loss of or defects in CLRC components disrupts heterochromatin formation due to loss of H3K9 methylation, thus an intact, fully functional CLRC complex is required for heterochromatin integrity. Despite its importance, little is known about the contribution of the CLRC component Raf2 to H3K9 methylation and heterochromatin assembly. We demonstrate that Raf2 is concentrated at centromeres and contrary to other analyses, we find that loss of Raf2 does not affect CENP-ACnp1 localisation or recruitment to centromeres. Our sequence alignments show that Raf2 contains a Replication Foci Targeting Sequence (RFTS) domain homologous to the RFTS domain of the human DNA methyltransferase DNMT1. We show that the Raf2 RFTS domain is required for centromeric heterochromatin formation as its mutation disrupts H3K9 methylation but not the processing of centromeric transcripts into small interfering RNAs (siRNAs) by the RNAi pathway. Analysis of biochemical interactions demonstrates that the RFTS domain mediates an interaction between Raf2 and the CLRC component Cul4. We conclude that the RFTS domain of Raf2 is a protein interaction module that plays an important role in heterochromatin formation at centromeres
    corecore