1,027 research outputs found
GALPROP WebRun: an internet-based service for calculating galactic cosmic ray propagation and associated photon emissions
GALPROP is a numerical code for calculating the galactic propagation of
relativistic charged particles and the diffuse emissions produced during their
propagation. The code incorporates as much realistic astrophysical input as
possible together with latest theoretical developments and has become a de
facto standard in astrophysics of cosmic rays. We present GALPROP WebRun, a
service to the scientific community enabling easy use of the freely available
GALPROP code via web browsers. In addition, we introduce the latest GALPROP
version 54, available through this service.Comment: Accepted for publication in Computer Physics Communications. Version
2 includes improvements suggested by the referee. Metadata completed in
version 3 (no changes to the manuscript
Cosmic Ray Spectra in Nambu-Goldstone Dark Matter Models
We discuss the cosmic ray spectra in annihilating/decaying Nambu-Goldstone
dark matter models. The recent observed positron/electron excesses at PAMELA
and Fermi experiments are well fitted by the dark matter with a mass of 3TeV
for the annihilating model, while with a mass of 6 TeV for the decaying model.
We also show that the Nambu-Goldstone dark matter models predict a distinctive
gamma-ray spectrum in a certain parameter space.Comment: 16 pages, 4 figure
Robust implications on Dark Matter from the first FERMI sky gamma map
We derive robust model-independent bounds on DM annihilations and decays from
the first year of FERMI gamma-ray observations of the whole sky. These bounds
only have a mild dependence on the DM density profile and allow the following
DM interpretations of the PAMELA and FERMI electron/positron excesses: primary
channels mu+ mu-, mu+ mu-mu+mu- or e+ e- e+ e-. An isothermal-like density
profile is needed for annihilating DM. In all such cases, FERMI gamma spectra
must contain a significant DM component, that may be probed in the future.Comment: 16 pages, 8 figures. Final versio
Level Spacing Distribution of Critical Random Matrix Ensembles
We consider unitary invariant random matrix ensembles which obey spectral
statistics different from the Wigner-Dyson, including unitary ensembles with
slowly (~(log x)^2) growing potentials and the finite-temperature fermi gas
model. If the deformation parameters in these matrix ensembles are small, the
asymptotically translational-invariant region in the spectral bulk is
universally governed by a one-parameter generalization of the sine kernel. We
provide an analytic expression for the distribution of the eigenvalue spacings
of this universal asymptotic kernel, which is a hybrid of the Wigner-Dyson and
the Poisson distributions, by determining the Fredholm determinant of the
universal kernel in terms of a Painleve VI transcendental function.Comment: 5 pages, 1 figure, REVTeX; restriction on the parameter stressed,
figure replaced, refs added (v2); typos (factors of pi) in (35), (36)
corrected (v3); minor changes incl. title, version to appear in Phys.Rev.E
(v4
Chaos Driven Decay of Nuclear Giant Resonances: Route to Quantum Self-Organization
The influence of background states with increasing level of complexity on the
strength distribution of the isoscalar and isovector giant quadrupole resonance
in Ca is studied. It is found that the background characteristics,
typical for chaotic systems, strongly affects the fluctuation properties of the
strength distribution. In particular, the small components of the wave function
obey a scaling law analogous to self-organized systems at the critical state.
This appears to be consistent with the Porter-Thomas distribution of the
transition strength.Comment: 14 pages, 4 Figures, Illinois preprint P-93-12-106, Figures available
from the author
The Offline Software Framework of the Pierre Auger Observatory
To be published in the ProceedingsInternational audienceThe Pierre Auger Observatory is designed to unveil the nature and the origins of the highest energy cosmic rays. The large and geographically dispersed collaboration of physicists and the wide-ranging collection of simulation and reconstruction tasks pose some special challenges for the offline analysis software. We have designed and implemented a general purpose framework which allows collaborators to contribute algorithms and sequencing instructions to build up the variety of applications they require. The framework includes machinery to manage these user codes, to organize the abundance of user-contributed configuration files, to facilitate multi-format file handling, and to provide access to event and time-dependent detector information which can reside in various data sources. A number of utilities are also provided, including a novel geometry package which allows manipulation of abstract geometrical objects independent of coordinate system choice. The framework is implemented in C++, and takes advantage of object oriented design and common open source tools, while keeping the user side simple enough for C++ novices to learn in a reasonable time. The distribution system incorporates unit and acceptance testing in order to support rapid development of both the core framework and contributed user code
Dirac gaugino as leptophilic dark matter
We investigate the leptophilic properties of Dirac gauginos in an
R--symmetric N=2 supersymmetric model with extended gauge and Higgs sectors.
The annihilation of Dirac gauginos to leptons requires no chirality flip in the
final states so that it is not suppressed as in the Majorana case. This implies
that it can be sizable enough to explain the positron excess observed by the
PAMELA experiment with moderate or no boost factors. When squark masses are
heavy, the annihilation of Dirac gauginos to hadrons is controlled by their
Higgsino fraction and is driven by the and final states.
Moreover, at variance with the Majorana case, Dirac gauginos with a
non-vanishing higgsino fraction can also have a vector coupling with the
gauge boson leading to a sizable spin--independent scattering cross section off
nuclei. Saturating the current antiproton limit, we show that Dirac gauginos
can leave a signal in direct detection experiments at the level of the
sensitivity of dark matter searches at present and in the near future.Comment: 24 pages, 10 figures, typos corrected, final version published on
JCA
Scaling Analysis of Fluctuating Strength Function
We propose a new method to analyze fluctuations in the strength function
phenomena in highly excited nuclei. Extending the method of multifractal
analysis to the cases where the strength fluctuations do not obey power scaling
laws, we introduce a new measure of fluctuation, called the local scaling
dimension, which characterizes scaling behavior of the strength fluctuation as
a function of energy bin width subdividing the strength function. We discuss
properties of the new measure by applying it to a model system which simulates
the doorway damping mechanism of giant resonances. It is found that the local
scaling dimension characterizes well fluctuations and their energy scales of
fine structures in the strength function associated with the damped collective
motions.Comment: 22 pages with 9 figures; submitted to Phys. Rev.
Sublocalization, superlocalization, and violation of standard single parameter scaling in the Anderson model
We discuss the localization behavior of localized electronic wave functions
in the one- and two-dimensional tight-binding Anderson model with diagonal
disorder. We find that the distributions of the local wave function amplitudes
at fixed distances from the localization center are well approximated by
log-normal fits which become exact at large distances. These fits are
consistent with the standard single parameter scaling theory for the Anderson
model in 1d, but they suggest that a second parameter is required to describe
the scaling behavior of the amplitude fluctuations in 2d. From the log-normal
distributions we calculate analytically the decay of the mean wave functions.
For short distances from the localization center we find stretched exponential
localization ("sublocalization") in both, 1d and 2d. In 1d, for large
distances, the mean wave functions depend on the number of configurations N
used in the averaging procedure and decay faster that exponentially
("superlocalization") converging to simple exponential behavior only in the
asymptotic limit. In 2d, in contrast, the localization length increases
logarithmically with the distance from the localization center and
sublocalization occurs also in the second regime. The N-dependence of the mean
wave functions is weak. The analytical result agrees remarkably well with the
numerical calculations.Comment: 12 pages with 9 figures and 1 tabl
Collectivity Embedded in Complex Spectra of Finite Interacting Fermi Systems: Nuclear Example
The mechanism of collectivity coexisting with chaos in a finite system of
strongly interacting fermions is investigated. The complex spectra are
represented in the basis of two-particle two-hole states describing the nuclear
double-charge exchange modes in Ca. An example of
excitations shows that the residual interaction, which generically implies
chaotic behavior, under certain specific and well identified conditions may
create strong transitions, even much stronger than those corresponding to a
pure mean-field picture. Such an effect results from correlations among the
off-diagonal matrix elements, is connected with locally reduced density of
states and a local minimum in the information entropy.Comment: 16 pages, LaTeX2e, REVTeX, 8 PostScript figures, to appear in
Physical Review
- …
