We consider unitary invariant random matrix ensembles which obey spectral
statistics different from the Wigner-Dyson, including unitary ensembles with
slowly (~(log x)^2) growing potentials and the finite-temperature fermi gas
model. If the deformation parameters in these matrix ensembles are small, the
asymptotically translational-invariant region in the spectral bulk is
universally governed by a one-parameter generalization of the sine kernel. We
provide an analytic expression for the distribution of the eigenvalue spacings
of this universal asymptotic kernel, which is a hybrid of the Wigner-Dyson and
the Poisson distributions, by determining the Fredholm determinant of the
universal kernel in terms of a Painleve VI transcendental function.Comment: 5 pages, 1 figure, REVTeX; restriction on the parameter stressed,
figure replaced, refs added (v2); typos (factors of pi) in (35), (36)
corrected (v3); minor changes incl. title, version to appear in Phys.Rev.E
(v4