426 research outputs found
Detection of plant stress through multispectral photography
There are no author-identified significant results in this report
Helicity Dependent and Independent Generalized Parton Distributions of the Nucleon in Lattice QCD
A complete description of the nucleon structure in terms of generalized
parton distributions (GPDs) at twist 2 level requires the
measurement/computation of the eight functions H, E, \tilde H, \tilde E, H_T,
E_T, \tilde H_T and \tilde E_T, all depending on the three variables x, \xi and
t. In this talk, we present and discuss our first steps in the framework of
lattice QCD towards this enormous task. Dynamical lattice QCD results for the
lowest three Mellin moments of the helicity dependent and independent GPDs are
shown in terms of their corresponding generalized form factors. Implications
for the transverse coordinate space structure of the nucleon as well as the
orbital angular momentum (OAM) contribution of quarks to the nucleon spin are
discussed in some detail.Comment: 5 pages, 5 figures, Talk presented by Ph.H. at Electron-Nucleus
Scattering VIII, Elba, Italy, June 21-25, 2004; typos corrected, minor change
in wording on p.4&
Nucleon Electromagnetic Form Factors from Lattice QCD using 2+1 Flavor Domain Wall Fermions on Fine Lattices and Chiral Perturbation Theory
We present a high-statistics calculation of nucleon electromagnetic form
factors in lattice QCD using domain wall quarks on fine lattices, to
attain a new level of precision in systematic and statistical errors. Our
calculations use lattices with lattice spacing a=0.084 fm for
pion masses of 297, 355, and 403 MeV, and we perform an overdetermined analysis
using on the order of 3600 to 7000 measurements to calculate nucleon electric
and magnetic form factors up to 1.05 GeV. Results are shown
to be consistent with those obtained using valence domain wall quarks with
improved staggered sea quarks, and using coarse domain wall lattices. We
determine the isovector Dirac radius , Pauli radius and
anomalous magnetic moment . We also determine connected contributions
to the corresponding isoscalar observables. We extrapolate these observables to
the physical pion mass using two different formulations of two-flavor chiral
effective field theory at one loop: the heavy baryon Small Scale Expansion
(SSE) and covariant baryon chiral perturbation theory. The isovector results
and the connected contributions to the isoscalar results are compared with
experiment, and the need for calculations at smaller pion masses is discussed.Comment: 44 pages, 40 figure
Nucleon structure with two flavors of dynamical domain-wall fermions
We present a numerical lattice quantum chromodynamics calculation of
isovector form factors and the first few moments of the isovector structure
functions of the nucleon. The calculation employs two degenerate dynamical
flavors of domain-wall fermions, resulting in good control of chiral symmetry
breaking. Non-perturbative renormalization of the relevant quark currents is
performed where necessary. The inverse lattice spacing, , is about 1.7
GeV. We use degenerate up and down dynamical quark masses around 1, 3/4 and 1/2
the strange quark mass. The physical volume of the lattice is about
. The ratio of the isovector vector to axial charges, ,
trends a bit lower than the experimental value as the quark mass is reduced
toward the physical point. We calculate the momentum-transfer dependences of
the isovector vector, axial, induced tensor and induced pseudoscalar form
factors. The Goldberger-Treiman relation holds at low momentum transfer and
yields a pion-nucleon coupling, , where the quoted
error is only statistical. We find that the flavor non-singlet quark momentum
fraction and quark helicity fraction
overshoot their experimental values after linear chiral extrapolation. We
obtain the transversity, in
at 2 GeV and a twist-3 polarized moment, , appears small, suggesting that
the Wandzura-Wilczek relation holds approximately. We discuss the systematic
errors in the calculation, with particular attention paid to finite-volume
effects, excited-state contamination, and chiral extrapolations.Comment: 28 pages in two columns; 37 figures, 12 table
Eddy current studies from the undulator-based positron source target wheel prototype
The efficiency of future positron sources for the next generation of high-energy particle colliders (e.g. ILC, CLIC, LHeC) can be improved if the positron-production target is immersed in the magnetic field of adjacent capture optics. If the target is also rotating due to heat deposition considerations then eddy currents may be induced and lead to additional heating and stresses. In this paper we present data from a rotating target wheel prototype for the baseline ILC positron source. The wheel has been operated at revolution rates up to 1800rpm in fields of the order of 1 Tesla. Comparisons are made between torque data obtained from a transducer on the target drive shaft and the results of finite-element simulations. Rotordynamics issues are presented and future experiments on other aspects of the positron source target station are considered
Long-lived photoexcited states in polydiacetylenes with different molecular and supramolecular organization
With the aim of determining the importance of the molecular and supramolecular organization on the excited states of polydiacetylenes, we have studied the photoinduced absorption spectra of the red form of poly[1,6-bis(3,6-didodecyl-N-carbazolyl)-2,4-hexadiyne] (polyDCHD-S) and the results compared with those of the blue form of the same polymer. An interpretation of the data is given in terms of both the conjugation length and the interbackbone separation also in relation to the photoinduced absorption spectra of both blue and red forms of poly[1,6-bis(N-carbazolyl)-2,4-hexadiyne] (polyDCHD), which does not carry the alkyl substituents on the carbazolyl side groups. Information on the above properties is derived from the analysis of the absorption and Raman spectra of this class of polydiacetylenes
Hadron Structure on the Lattice
A few chosen nucleon properties are described from a lattice QCD perspective:
the nucleon sigma term and the scalar strangeness in the nucleon; the vector
form factors in the nucleon, including the vector strangeness contribution, as
well as parity breaking effects like the anapole and electric dipole moment;
and finally the axial and tensor charges of the nucleon. The status of the
lattice calculations is presented and their potential impact on phenomenology
is discussed.Comment: 17 pages, 9 figures; proceedings of the Conclusive Symposium of the
Collaborative Research Center 443 "Many-body structure of strongly
interacting systems", Mainz, February 23-25, 201
Ab-initio calculation of the electronic and optical excitations in polythiophene: effects of intra- and interchain screening
We present an calculation of the electronic and optical excitations of an
isolated polythiophene chain as well as of bulk polythiophene. We use the GW
approximation for the electronic self-energy and include excitonic effects by
solving the electron-hole Bethe-Salpeter equation. The inclusion of interchain
screening in the case of bulk polythiophene drastically reduces both the
quasi-particle band gap and the exciton binding energies, but the optical gap
is hardly affected. This finding is relevant for conjugated polymers in
general.Comment: 4 pages, 1 figur
The size of electron-hole pairs in pi conjugated systems
We have performed momentum dependent electron energy-loss studies of the
electronic excitations in sexithiophene and compared the results to those from
parent oligomers. Our experiment probes the dynamic structure factor
S(q,omega)and we show that the momentum dependent intensity variation of the
excitations observed can be used to extract the size of the electron-hole pair
created in the excitation process. The extension of the electron-hole pairs
along the molecules is comparable to the length of the molecules and thus maybe
only limited by structural constraints. Consequently, the primary
intramolecular electron-hole pairs are relatively weakly bound. We find no
evidence for the formation of excitations localized on single thiophene units.Comment: RevTex, 3 figures, to appear in Physical Review Letter
- …