145 research outputs found

    Core-collapse supernova simulations and the formation of neutron stars, hybrid stars, and black holes

    Get PDF
    We investigate observable signatures of a first-order quantum chromodynamics (QCD) phase transition in the context of core collapse supernovae. To this end, we conduct axially symmetric numerical relativity simulations with multi-energy neutrino transport, using a hadron-quark hybrid equation of state (EOS). We consider four non-rotating progenitor models, whose masses range from 9.69.6 to 7070\,M_\odot. We find that the two less massive progenitor stars (9.6 and 11.2\,M_\odot) show a successful explosion, which is driven by the neutrino heating. They do not undergo the QCD phase transition and leave behind a neutron star (NS). As for the more massive progenitor stars (50 and 70\,M_\odot), the proto-neutron star (PNS) core enters the phase transition region and experiences the second collapse. Because of a sudden stiffening of the EOS entering to the pure quark matter regime, a strong shock wave is formed and blows off the PNS envelope in the 50\,M_\odot model. Consequently the remnant becomes a quark core surrounded by hadronic matters, leading to the formation of the hybrid star. However for the 70\,M_\odot model, the shock wave cannot overcome the continuous mass accretion and it readily becomes a black hole. We find that the neutrino and gravitational wave (GW) signals from supernova explosions driven by the hadron-quark phase transition are detectable for the present generation of neutrino and GW detectors. Furthermore, the analysis of the GW detector response reveals unique kHz signatures, which will allow us to distinguish this class of supernova explosions from failed and neutrino-driven explosions

    Neutrino-driven supernova explosions powered by nuclear reactions

    Get PDF
    We have investigated the revival of a shock wave by nuclear burning reactions at the central region of core-collapse supernovae. For this purpose, we performed hydrodynamic simulations of core collapse and bounce for 15 M ⊙ progenitor model, using ZEUS-MP code in axi-symmetric coordinates. Our numerical code is equipped with a simple nuclear reaction network including 13 α nuclei form 4He to 56Ni, and accounting for energy feedback from nuclear reactions as well as neutrino heating and cooling. We found that the energy released by nuclear reactions is significantly helpful in accelerating shock waves and is able to produce energetic explosion even if the input neutrino luminosity is lo

    Nucleosynthesis in 2D Core-Collapse Supernovae of 11.2 and 17.0 M_{\odot} Progenitors: Implications for Mo and Ru Production

    Full text link
    Core-collapse supernovae are the first polluters of heavy elements in the galactic history. As such, it is important to study the nuclear compositions of their ejecta, and understand their dependence on the progenitor structure (e.g., mass, compactness, metallicity). Here, we present a detailed nucleosynthesis study based on two long-term, two-dimensional core-collapse supernova simulations of a 11.2 M_{\odot} and a 17.0 M_{\odot} star. We find that in both models nuclei well beyond the iron group (up to Z44Z \approx 44) can be produced, and discuss in detail also the nucleosynthesis of the p-nuclei 92,94^{92,94}Mo and 96,98^{96,98}Ru. While we observe the production of 92^{92}Mo and 94^{94}Mo in slightly neutron-rich conditions in both simulations, 96,98^{96,98}Ru can only be produced efficiently via the ν\nup-process. Furthermore, the production of Ru in the ν\nup-process heavily depends on the presence of very proton-rich material in the ejecta. This disentanglement of production mechanisms has interesting consequences when comparing to the abundance ratios between these isotopes in the solar system and in presolar grains.Comment: 48 pages, 19 figures, accepted for publication in: J. Phys. G: Nucl. Part. Phy

    The Intermediate r-process in Core-collapse Supernovae Driven by the Magneto-rotational Instability

    Get PDF
    We investigated r-process nucleosynthesis in magneto-rotational supernovae, based on a new explosion mechanism induced by the magneto-rotational instability (MRI). A series of axisymmetric magneto-hydrodynamical simulations with detailed microphysics including neutrino heating is performed, numerically resolving the MRI. Neutrino-heating dominated explosions, enhanced by magnetic fields, showed mildly neutronrich ejecta producing nuclei up to A similar to 130 (i. e., the weak r-process), while explosion models with stronger magnetic fields reproduce a solar-like r-process pattern. More commonly seen abundance patterns in our models are in between the weak and regular r-process, producing lighter and intermediate-mass nuclei. These intermediate r-processes exhibit a variety of abundance distributions, compatible with several abundance patterns in r-process-enhanced metal-poor stars. The amount of Eu ejecta similar to 10(-5) M circle dot in magnetically driven jets agrees with predicted values in the chemical evolution of early galaxies. In contrast, neutrino-heating dominated explosions have a significant amount of Fe (Ni-56) and Zn, comparable to regular supernovae and hypernovae, respectively. These results indicate magneto-rotational supernovae can produce a wide range of heavy nuclei from iron-group to r-process elements, depending on the explosion dynamics

    Numerical Study on GRB-Jet Formation in Collapsars

    Get PDF
    Two-dimensional magnetohydrodynamic simulations are performed using the ZEUS-2D code to investigate the dynamics of a collapsar that generates a GRB jet, taking account of realistic equation of state, neutrino cooling and heating processes, magnetic fields, and gravitational force from the central black hole and self gravity. It is found that neutrino heating processes are not so efficient to launch a jet in this study. It is also found that a jet is launched mainly by B_\phi fields that are amplified by the winding-up effect. However, since the ratio of total energy relative to the rest mass energy in the jet is not so high as several hundred, we conclude that the jets seen in this study are not be a GRB jet. This result suggests that general relativistic effects, which are not included in this study, will be important to generate a GRB jet. Also, the accretion disk with magnetic fields may still play an important role to launch a GRB jet, although a simulation for much longer physical time (\sim 10-100 s) is required to confirm this effect. It is shown that considerable amount of 56Ni is synthesized in the accretion disk. Thus there will be a possibility for the accretion disk to supply sufficient amount of 56Ni required to explain the luminosity of a hypernova. Also, it is shown that neutron-rich matter due to electron captures with high entropy per baryon is ejected along the polar axis. Moreover, it is found that the electron fraction becomes larger than 0.5 around the polar axis near the black hole by \nu_e capture at the region. Thus there will be a possibility that r-process and r/p-process nucleosynthesis occur at these regions. Finally, much neutrons will be ejected from the jet, which suggests that signals from the neutron decays may be observed as the delayed bump of afterglow or gamma-rays.Comment: 54 pages with 19 postscript figures. Accepted for publication in ApJ. High resolution version is available at http://www2.yukawa.kyoto-u.ac.jp/~nagataki/collapsar.pd

    Explosion Mechanisms of Core-Collapse Supernovae

    Full text link
    Supernova theory, numerical and analytic, has made remarkable progress in the past decade. This progress was made possible by more sophisticated simulation tools, especially for neutrino transport, improved microphysics, and deeper insights into the role of hydrodynamic instabilities. Violent, large-scale nonradial mass motions are generic in supernova cores. The neutrino-heating mechanism, aided by nonradial flows, drives explosions, albeit low-energy ones, of ONeMg-core and some Fe-core progenitors. The characteristics of the neutrino emission from new-born neutron stars were revised, new features of the gravitational-wave signals were discovered, our notion of supernova nucleosynthesis was shattered, and our understanding of pulsar kicks and explosion asymmetries was significantly improved. But simulations also suggest that neutrino-powered explosions might not explain the most energetic supernovae and hypernovae, which seem to demand magnetorotational driving. Now that modeling is being advanced from two to three dimensions, more realism, new perspectives, and hopefully answers to long-standing questions are coming into reach.Comment: 35 pages, 11 figures (29 eps files; high-quality versions can be obtained upon request); accepted by Annual Review of Nuclear and Particle Scienc

    Neutrino oscillations in magnetically driven supernova explosions

    Full text link
    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large theta_(13), we show that survival probabilities of electron type neutrinos and antineutrinos seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of electron type antineutrinos observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which leads to a noticeable decrease in the electron type neutrino signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the electron type antineutrinos and neutrinos signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.Comment: 25 pages, 21 figures, JCAP in pres
    corecore