315 research outputs found

    Magnetic state in URu2Si2, UPd2Al3 and UNi2Al3 probed by point contacts

    Full text link
    The antiferromagnetic (AFM) state has been investigated in the three heavy-fermion compounds URu2Si2, UPd2Al3, and UNi2Al3 by measuring dV/dI(V) curves of point contacts at different temperatures (1.5-20 K) and magnetic fields (0-28 T). The zero-bias maximum in dV/dI(V) for URu2Si2 points to a partially gapped Fermi-surface related to the itinerant nature of the AFM state contrary to UPd2Al3 where analogous features have not been found. The AFM state in UNi2Al3 has more similarities with URu2Si2. For URu2Si2, the same critical field of about 40 T along the easy c axis is found for all features in dV/dI(V) corresponding to the Neel temperature, the gap in the electronic density of states, and presumably the ordered moments.Comment: 10 pages incl. 5 figures, LaTex 2

    Spin glass behavior in URh_2Ge_2

    Get PDF
    URh_2Ge_2 occupies an extraordinary position among the heavy-electron 122-compounds, by exhibiting a previously unidentified form of magnetic correlations at low temperatures, instead of the usual antiferromagnetism. Here we present new results of ac and dc susceptibilities, specific heat and neutron diffraction on single-crystalline as-grown URh_2Ge_2. These data clearly indicate that crystallographic disorder on a local scale produces spin glass behavior in the sample. We therefore conclude that URh_2Ge_2 is a 3D Ising-like, random-bond, heavy-fermion spin glass.Comment: 10 pages, RevTeX, with 4 postscript figures, accepted by Physical Review Letters Nov 15, 199

    Heavy Carriers and Non-Drude Optical Conductivity in MnSi

    Full text link
    Optical properties of the weakly helimagnetic metal MnSi have been determined in the photon energy range from 2 meV to 4.5 eV using the combination of grazing incidence reflectance at 80 degrees (2 meV to 0.8 eV) and ellipsometry (0.8 to 4.5 eV). As the sample is cooled below 100 K the effective mass becomes strongly frequency dependent at low frequencies, while the scattering rate developes a linear frequency dependence. The complex optical conductivity can be described by the phenomenological relation \sigma(\omega,T) \propto (\Gamma(T)+i\omega)^{-1/2} used for cuprates and ruthenates.Comment: 5 pages, ReVTeX 4, 5 figures in eps forma

    Experimental Test of the Inter-Layer Pairing Models for High-Tc Superconductivity Using Grazing Incidence Infrared Reflectometry

    Get PDF
    From measurements of the far-infrared reflectivity at grazing angles of incidence with p-polarized light we determined the c-axis Josephson plasma frequencies of the single layer high T_c cuprates Tl_2Ba_2CuO_6 and La_{2-x}Sr_xCuO_4. We detected a strong plasma resonance at 50 cm^{-1} for La_{2-x}Sr_xCuO_4 in excellent agreement with previously published results. For Tl_2Ba_2CuO_6 we were able to determine an upper limit of the unscreened c-axis Josephson plasma frequency 100 cm^{-1} or a c-axis penetration depth > 15 \mu m. The small value of ωJ\omega_J stands in contrast to recent a prediction based on the inter-layer tunneling mechanism of superconductivity.Comment: 4 pages, Phys. Rev. B, in press, Revtex, 4 postscript figure

    Structural, electronic, and magneto-optical properties of YVO3_3

    Get PDF
    Optical and magneto-optical properties of YVO3_3 single crystal were studied in FIR, visible, and UV regions. Two structural phase transitions at 75 K and 200 K were observed and established to be of the first and second order, respectively. The lattice has an orthorhombic PbnmPbnm symmetry both above 200 K as well as below 75 K, and is found to be dimerized monoclinic Pb11Pb11 in between. We identify YVO3_3 as a Mott-Hubbard insulator with the optical gap of 1.6 eV. The electronic excitations in the visible spectrum are determined by three dd-bands at 1.8, 2.4, and 3.3 eV, followed by the charge-transfer transitions at about 4 eV. The observed structure is in good agreement with LSDA+UU band structure calculations. By using ligand field considerations, we assigned these bands to the transitions to the 4A2g^4A_{2g}, 2Eg+2T1g^2E_{g} + ^2T_{1g}, and 2T2g^2T_{2g} states. The strong temperature dependence of these bands is in agreement with the formation of orbital order. Despite the small net magnetic moment of 0.01 μB\mu_B per vanadium, the Kerr effect of the order of 0.010.01^\circ was observed for all three dd-bands in the magnetically ordered phase TNeˊel<116KT_{\text{N\'eel}}<116 K. A surprisingly strong enhancement of the Kerr effect was found below 75 K, reaching a maximum of 0.10.1^\circ. The effect is ascribed to the non-vanishing net orbital magnetic moment.Comment: Submitted to Phys. Rev.

    Observation of the Transverse Optical Plasmon in SmLa0.8Sr0.2CuO4-d

    Full text link
    We present microwave and infrared measurements on SmLa0.8Sr0.2CuO4-d, which are direct evidence for the existence of a transverse optical plasma mode, observed as a peak in the c-axis optical conductivity. This mode appears as a consequence of the existence of two different intrinsic Josephson couplings between the CuO2 layers, one with a Sm2O2 block layer, and the other one with a (La,Sr)O block layer. From the frequencies and the intensities of the collective modes we determine the value of the compressibility of the two dimensional electron fluid in the copper oxygen planes.Comment: REVTeX, 4 pages, 5 eps-figures, PRL, in pres
    corecore