110 research outputs found

    The effect of sacubitril/valsartan on left ventricular myocardial deformation in heart failure with preserved ejection fraction (PARAMOUNT trial)

    Get PDF
    Background: Global longitudinal strain (GLS) and global circumferential strain (GCS) have been shown to be impaired in heart failure with preserved ejection fraction. We sought to assess whether treating patients with heart failure with preserved ejection fraction with sacubitril/valsartan would significantly improve GLS and GCS compared with valsartan alone. Methods and Results: PARAMOUNT (Prospective Comparison of ARNI With ARB on Management of Heart Failure With Preserved Ejection Fraction Trial) was a phase II, randomized, parallel-group, double-blind multicenter trial in 301 patients with New York Heart Association functional class II–III heart failure, a left ventricular ejection fraction of 45%, and an N-terminal pro-B-type natriuretic peptide of ≥400 pg/mL. Participants were randomly assigned (1:1) to sacubitril/valsartan titrated to 200 mg twice daily or valsartan titrated to 160 mg twice daily for 36 weeks. We assessed changes in the GLS and the GCS from baseline to 36 weeks, adjusting for baseline value, in patients with sufficient imaging quality for 2-dimensitonal speckle tracking analysis at both timepoints (n = 60 sacubitril/valsartan, n = 75 valsartan only). GCS was significantly improved at 36 weeks in the sacubitril/valsartan group when compared with the valsartan group (Δ4.42%, 95% confidence interval [CI] 0.67–8.17, P = .021), with no significant difference observed in GLS (Δ0.25%, 95% CI, –1.19 to 1.70, P = .73). Patients with a history of hospitalization for heart failure had a differentially greater improvement in GCS when treated with sacubitril/valsartan. Conclusions: In patients with heart failure with preserved ejection fraction, sacubitril/valsartan improved GCS but not GLS when compared with valsartan during a 36-week period

    Effect of eplerenone on parathyroid hormone levels in patients with primary hyperparathyroidism: a randomized, double-blind, placebo-controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing evidence suggests the bidirectional interplay between parathyroid hormone and aldosterone as an important mechanism behind the increased risk of cardiovascular damage and bone disease observed in primary hyperparathyroidism. Our primary object is to assess the efficacy of the mineralocorticoid receptor-blocker eplerenone to reduce parathyroid hormone secretion in patients with parathyroid hormone excess.</p> <p>Methods/design</p> <p>Overall, 110 adult male and female patients with primary hyperparathyroidism will be randomly assigned to eplerenone (25 mg once daily for 4 weeks and 4 weeks with 50 mg once daily after dose titration] or placebo, over eight weeks. Each participant will undergo detailed clinical assessment, including anthropometric evaluation, 24-h ambulatory arterial blood pressure monitoring, echocardiography, kidney function and detailed laboratory determination of biomarkers of bone metabolism and cardiovascular disease.</p> <p>The study comprises the following exploratory endpoints: mean change from baseline to week eight in (1) parathyroid hormone(1–84) as the primary endpoint and (2) 24-h systolic and diastolic ambulatory blood pressure levels, NT-pro-BNP, biomarkers of bone metabolism, 24-h urinary protein/albumin excretion and echocardiographic parameters reflecting systolic and diastolic function as well as cardiac dimensions, as secondary endpoints.</p> <p>Discussion</p> <p>In view of the reciprocal interaction between aldosterone and parathyroid hormone and the potentially ensuing target organ damage, the EPATH trial is designed to determine whether eplerenone, compared to placebo, will effectively impact on parathyroid hormone secretion and improve cardiovascular, renal and bone health in patients with primary hyperparathyroidism.</p> <p>Trial registration</p> <p>ISRCTN33941607</p

    Genetic Differentiation of the Western Capercaillie Highlights the Importance of South-Eastern Europe for Understanding the Species Phylogeography

    Get PDF
    The Western Capercaillie (Tetrao urogallus L.) is a grouse species of open boreal or high altitude forests of Eurasia. It is endangered throughout most mountain range habitat areas in Europe. Two major genetically identifiable lineages of Western Capercaillie have been described to date: the southern lineage at the species' southernmost range of distribution in Europe, and the boreal lineage. We address the question of genetic differentiation of capercaillie populations from the Rhodope and Rila Mountains in Bulgaria, across the Dinaric Mountains to the Slovenian Alps. The two lineages' contact zone and resulting conservation strategies in this so-far understudied area of distribution have not been previously determined. The results of analysis of mitochondrial DNA control region sequences of 319 samples from the studied populations show that Alpine populations were composed exclusively of boreal lineage; Dinaric populations of both, but predominantly (96%) of boreal lineage; and Rhodope-Rila populations predominantly (>90%) of southern lineage individuals. The Bulgarian mountains were identified as the core area of the southern lineage, and the Dinaric Mountains as the western contact zone between both lineages in the Balkans. Bulgarian populations appeared genetically distinct from Alpine and Dinaric populations and exhibited characteristics of a long-term stationary population, suggesting that they should be considered as a glacial relict and probably a distinct subspecies. Although all of the studied populations suffered a decline in the past, the significantly lower level of genetic diversity when compared with the neighbouring Alpine and Bulgarian populations suggests that the isolated Dinaric capercaillie is particularly vulnerable to continuing population decline. The results are discussed in the context of conservation of the species in the Balkans, its principal threats and legal protection status. Potential conservation strategies should consider the existence of the two lineages and their vulnerable Dinaric contact zone and support the specificities of the populations

    Evolution-based approach needed for the conservation and silviculture of peripheral forest tree populations

    Get PDF
    The fate of peripheral forest tree populations is of particular interest in the context of climate change. These populations may concurrently be those where the most significant evolutionary changes will occur; those most facing increasing extinction risk; the source of migrants for the colonization of new areas at leading edges; or the source of genetic novelty for reinforcing standing genetic variation in various parts of the range. Deciding which strategy to implement for conserving and sustainably using the genetic resources of peripheral forest tree populations is a challenge. Here, we review the genetic and ecological processes acting on different types of peripheral populations and indicate why these processes may be of general interest for adapting forests and forest management to climate change. We particularly focus on peripheral populations at the rear edge of species distributions where environmental challenges are or will become most acute. We argue that peripheral forest tree populations are “natural laboratories” for resolving priority research questions such as how the complex interaction between demographic processes and natural selection shape local adaptation; and whether genetic adaptation will be sufficient to allow the long-term persistence of species within their current distribution. Peripheral populations are key assets for adaptive forestry which need specific measures for their preservation. The traditionally opposing views which may exist between conservation planning and sustainable forestry need to be reconciled and harmonized for managing peripheral populations. Based on existing knowledge, we suggest approaches and principles which may be used for the management and conservation of these distinctive and valuable populations, to maintain active genetic and ecological processes that have sustained them over time
    corecore