164 research outputs found

    Neuroprotective strategies for ischemic stroke—Future perspectives

    Get PDF
    Ischemic stroke is the main cause of death and the most common cause of acquired physical disability worldwide. Recent demographic changes increase the relevance of stroke and its sequelae. The acute treatment for stroke is restricted to causative recanalization and restoration of cerebral blood flow, including both intravenous thrombolysis and mechanical thrombectomy. Still, only a limited number of patients are eligible for these time-sensitive treatments. Hence, new neuroprotective approaches are urgently needed. Neuroprotection is thus defined as an intervention resulting in the preservation, recovery, and/or regeneration of the nervous system by interfering with the ischemic-triggered stroke cascade. Despite numerous preclinical studies generating promising data for several neuroprotective agents, successful bench-to-bedside translations are still lacking. The present study provides an overview of current approaches in the research field of neuroprotective stroke treatment. Aside from “traditional” neuroprotective drugs focusing on inflammation, cell death, and excitotoxicity, stem-cell-based treatment methods are also considered. Furthermore, an overview of a prospective neuroprotective method using extracellular vesicles that are secreted from various stem cell sources, including neural stem cells and bone marrow stem cells, is also given. The review concludes with a short discussion on the microbiota–gut–brain axis that may serve as a potential target for future neuroprotective therapies

    Preconditioning concepts for the therapeutic use of extracellular vesicles against stroke

    Get PDF
    Various preclinical stroke models have demonstrated the neuroprotective effects of extracellular vesicles (EVs) obtained from several types of cells, including neurons, astrocytes, microglia, neuronal progenitor cells, bone marrow stem cells, and mesenchymal stem cells. EVs interfere with key mechanisms in stroke pathophysiology such as cell death, neuroinflammation, autophagy, and angiogenesis. The mode of action and efficacy depend on the specific EV content, including miRNAs, proteins, and lipids, which can be modified through (I) bioengineering methods, (II) choice of source cells, and (III) modification of the source cell environment. Indeed, modifying the environment by preconditioning the EV-secreting cells with oxygen-glucose deprivation or medium modification revealed superior neuroprotective effects in stroke models. Although the concept of preconditioned EVs is relatively novel, it holds promise for the future treatment of ischemic stroke. Here, we give a brief overview about the main mechanisms of EV-induced neuroprotection and discuss the current status of preconditioning concepts for EV-treatment of ischemic stroke

    TREM2 regulates microglial lipid droplet formation and represses post-ischemic brain injury

    Get PDF
    Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor protein predominantly expressed in microglia within the central nervous system (CNS). TREM2 regulates multiple microglial functions, including lipid metabolism, immune reaction, inflammation, and microglial phagocytosis. Recent studies have found that TREM2 is highly expressed in activated microglia after ischemic stroke. However, the role of TREM2 in the pathologic response after stroke remains unclear. Herein, TREM2-deficient microglia exhibit an impaired phagocytosis rate and cholesteryl ester (CE) accumulation, leading to lipid droplet formation and upregulation of Perilipin-2 (PLIN2) expression after hypoxia. Knockdown of TREM2 results in increased lipid synthesis (PLIN2, SOAT1) and decreased cholesterol clearance and lipid hydrolysis (LIPA, ApoE, ABCA1, NECH1, and NPC2), further impacting microglial phenotypes. In these lipid droplet-rich microglia, the TGF-β1/Smad2/3 signaling pathway is downregulated, driving microglia towards a pro-inflammatory phenotype. Meanwhile, in a neuron-microglia co-culture system under hypoxic conditions, we found that microglia lost their protective effect against neuronal injury and apoptosis when TREM2 was knocked down. Under in vivo conditions, TREM2 knockdown mice express lower TGF-β1 expression levels and a lower number of anti-inflammatory M2 phenotype microglia, resulting in increased cerebral infarct size, exacerbated neuronal apoptosis, and aggravated neuronal impairment. Our work suggests that TREM2 attenuates stroke-induced neuroinflammation by modulating the TGF-β1/Smad2/3 signaling pathway. TREM2 may play a direct role in the regulation of inflammation and also exert an influence on the post-ischemic inflammation and the stroke pathology progression via regulation of lipid metabolism processes. Thus, underscoring the therapeutic potential of TREM2 agonists in ischemic stroke and making TREM2 an attractive new clinical target for the treatment of ischemic stroke and other inflammation-related diseases.National Natural Science Foundation of China ; Science and Technology Commission of Shanghai Municipality ; China Scholarship Counci

    Preconditioned extracellular vesicles from hypoxic microglia reduce poststroke AQP4 depolarization, disturbed cerebrospinal fluid flow, astrogliosis, and neuroinflammation

    Get PDF
    Background: Stroke stimulates reactive astrogliosis, aquaporin 4 (AQP4) depolarization and neuroinflammation. Preconditioned extracellular vesicles (EVs) from microglia exposed to hypoxia, in turn, reduce poststroke brain injury. Nevertheless, the underlying mechanisms of such effects are elusive, especially with regards to inflammation, AQP4 polarization, and cerebrospinal fluid (CSF) flow. Methods: Primary microglia and astrocytes were exposed to oxygen-glucose deprivation (OGD) injury. For analyzing the role of AQP4 expression patterns under hypoxic conditions, a co-culture model of astrocytes and microglia was established. Further studies applied a stroke model, where some mice also received an intracisternal tracer infusion of rhodamine B. As such, these in vivo studies involved the analysis of AQP4 polarization, CSF flow, astrogliosis, and neuroinflammation as well as ischemia-induced brain injury. Results: Preconditioned EVs decreased periinfarct AQP4 depolarization, brain edema, astrogliosis, and inflammation in stroke mice. Likewise, EVs promoted postischemic CSF flow and cerebral blood perfusion, and neurological recovery. Under in vitro conditions, hypoxia stimulated M2 microglia polarization, whereas EVs augmented M2 microglia polarization and repressed M1 microglia polarization even further. In line with this, astrocytes displayed upregulated AQP4 clustering and proinflammatory cytokine levels when exposed to OGD, which was reversed by preconditioned EVs. Reduced AQP4 depolarization due to EVs, however, was not a consequence of unspecific inflammatory regulation, since LPS-induced inflammation in co-culture models of astrocytes and microglia did not result in altered AQP4 expression patterns in astrocytes. Conclusions: These findings show that hypoxic microglia may participate in protecting against stroke-induced brain damage by regulating poststroke inflammation, astrogliosis, AQP4 depolarization, and CSF flow due to EV release

    Manganese causes neurotoxic iron accumulation via translational repression of Amyloid Precursor Protein (APP) and H-Ferritin

    Get PDF
    For more than 150 years, it is known that occupational overexposure of manganese (Mn) causes movement disorders resembling Parkinson's disease (PD) and PD‐like syndromes. However, the mechanisms of Mn toxicity are still poorly understood. Here, we demonstrate that Mn dose‐ and time‐dependently blocks the protein translation of amyloid precursor protein (APP) and heavy‐chain Ferritin (H‐Ferritin), both iron homeostatic proteins with neuroprotective features. APP and H‐Ferritin are post‐transcriptionally regulated by iron responsive proteins, which bind to homologous iron responsive elements (IREs) located in the 5′‐untranslated regions (5′‐UTRs) within their mRNA transcripts. Using reporter assays, we demonstrate that Mn exposure repressed the 5′‐UTR‐activity of APP and H‐Ferritin, presumably via increased iron responsive proteins‐iron responsive elements binding, ultimately blocking their protein translation. Using two specific Fe2+‐specific probes (RhoNox‐1 and IP‐1) and ion chromatography inductively coupled plasma mass spectrometry (IC‐ICP‐MS), we show that loss of the protective axis of APP and H‐Ferritin resulted in unchecked accumulation of redox‐active ferrous iron (Fe2+) fueling neurotoxic oxidative stress. Enforced APP expression partially attenuated Mn‐induced generation of cellular and lipid reactive oxygen species and neurotoxicity. Lastly, we could validate the Mn‐mediated suppression of APP and H‐Ferritin in two rodent in vivo models (C57BL6/N mice and RjHan:SD rats) mimicking acute and chronic Mn exposure. Together, these results suggest that Mn‐induced neurotoxicity is partly attributable to the translational inhibition of APP and H‐Ferritin resulting in impaired iron metabolism and exacerbated neurotoxic oxidative stress

    Enhancement of endogenous neurogenesis in ephrin-B3 deficient mice after transient focal cerebral ischemia

    Get PDF
    Cerebral ischemia stimulates endogenous neurogenesis. However, the functional relevance of this phenomenon remains unclear because of poor survival and low neuronal differentiation rates of newborn cells. Therefore, further studies on mechanisms regulating neurogenesis under ischemic conditions are required, among which ephrin-ligands and ephrin-receptors (Eph) are an interesting target. Although Eph/ephrin proteins like ephrin-B3 are known to negatively regulate neurogenesis under physiological conditions, their role in cerebral ischemia is largely unknown. We therefore studied neurogenesis, brain injury and functional outcome in ephrin-B3−/− (knockout) and ephrin-B3+/+ (wild-type) mice submitted to cerebral ischemia. Induction of stroke resulted in enhanced cell proliferation and neuronal differentiation around the lesion site of ephrin-B3−/− compared to ephrin-B3+/+ mice. However, prominent post-ischemic neurogenesis in ephrin-B3−/− mice was accompanied by significantly increased ischemic injury and motor coordination deficits that persisted up to 4 weeks. Ischemic injury in ephrin-B3−/− mice was associated with a caspase-3-dependent activation of the signal transducer and activator of transcription 1 (STAT1). Whereas inhibition of caspase-3 had no effect on brain injury in ephrin-B3+/+ animals, infarct size in ephrin-B3−/− mice was strongly reduced, suggesting that aggravated brain injury in these animals might involve a caspase-3-dependent activation of STAT1. In conclusion, post-ischemic neurogenesis in ephrin-B3−/− mice is strongly enhanced, but fails to contribute to functional recovery because of caspase-3-mediated aggravation of ischemic injury in these animals. Our results suggest that ephrin-B3 might be an interesting target for overcoming some of the limitations of further cell-based therapies in stroke
    • …
    corecore