525 research outputs found
Quantitative Analysis of the Interactions of Metal Complexes and Amphiphilic Systems: Calorimetric, Spectroscopic and Theoretical Aspects
Metals and metal-based compounds have many implications in biological systems. They are involved in cellular functions, employed in the formation of metal-based drugs and present as pollutants in aqueous systems, with toxic effects for living organisms. Amphiphilic molecules also play important roles in the above bio-related fields as models of membranes, nanocarriers for drug delivery and bioremediating agents. Despite the interest in complex systems involving both metal species and surfactant aggregates, there is still insufficient knowledge regarding the quantitative aspects at the basis of their binding interactions, which are crucial for extensive comprehension of their behavior in solution. Only a few papers have reported quantitative analyses of the thermodynamic, kinetic, speciation and binding features of metal-based compounds and amphiphilic aggregates, and no literature review has yet addressed the quantitative study of these complexes. Here, we summarize and critically discuss the recent contributions to the quantitative investigation of the interactions of metal-based systems with assemblies made of amphiphilic molecules by calorimetric, spectrophotometric and computational techniques, emphasizing the unique picture and parameters that such an analytical approach may provide, to support a deep understanding and beneficial use of these systems for several applications
Effects of micelle nature and concentration on the acid dissociation constants of the metal extractor PADA
The pyridine-2-azo-p-dimethylaniline (PADA) ligand presents two acid dissociation constants, being pKa1 related to the pyridinium and pKa2 related to the anilinium residue. These have been measured by spectrophotometric titrations in aqueous solutions containing either the anionic (SDS), or the non–ionic (Triton X-100) or the cationic (DTAC) surfactants. The pKai shifts of the charged systems from that of the PADA/Triton X-100 reference (∆pKai0) are compared. For PADA/DTAC ∆pKa10 = 0.05 and ∆pKa20 = 0.6. For PADA/SDS ∆pKa10 = 2.1 and ∆pKa20 = 2.1 both yielding the value of -126 mV for the surface potential (ψ) of SDS. The ψ value, lying between the calculated Stern potential and the zeta potential, indicates that the dye is located on the SDS micelles between the fixed and the shear layer. In contrast, the behaviour of PADA/DTAC is explained assuming that the positively charged deprotonation sites of PADA are forced to protrude towards the bulk solvent by the positive charges of DTAC micelles. The shifts of the apparent pKai from the aqueous values (∆pKaiw) have also been analysed. Concerning PADA/Triton X-100, the shifts ∆pKa1w = -0.1 and ∆pKa2w = -0.9 are rationalized in terms of dielectric constant reduction at the reaction sites. Concerning PADA/DTAC, ∆pKa1w= -0.05 and ∆pKa2w= -0.3 whereas, for PADA/SDS, ∆pKa1w = 2.0 and ∆pKa2w = 1.2. The pKa2w values decrease on raising the surfactant concentrations for all the investigated systems. This behaviour is explained assuming that the increase of the overall micellar surface and, by consequence, of the reaction sites number, results in a site dilution effect which disfavours proton association. The addition of NaCl induces changes of pKa1 and pKa2 which are explained in terms of (large) reduction of ψ for PADA/SDS and of (small) reduction of the dielectric constant for the other systems
Spectroscopic analysis of the binding of paraquat and diquat herbicides to biosubstrates
The study of the interaction of persistent organic pollutants with biosubstrates helps to unravel the pathways for toxicity, however, few mechanistic data are present in the literature for these systems. We analyzed the binding of paraquat (PQ) and diquat (DQ) herbicides to natural calf thymus DNA and a DNA G-quadruplex by spectrophotometric titrations, ethidium bromide exchange tests, viscometry, and melting experiments. The interaction with bovine serum albumin (BSA) protein was studied spectrofluorimetrically at different temperatures. The retention of the targets on positive, negative, and neutral micellar aggregates and liposomes was analyzed by ultrafiltration experiments. Despite some favorable features, PQ and DQ only externally bind natural DNA and do not interact with DNA oligonucleotides. Both herbicides bind bovine serum albumin (BSA). PQ binds BSA mainly according to an electrostatics-driven process. However, ultrafiltration data also show that some hydrophobic contribution participates in the features of these systems. The practical problems related to unfavorable spectroscopic signals and inner filter effects are also discussed. Overall, both herbicides show a low affinity for nucleic acids and weak penetration into liposomes; in addition, the equilibrium constants values found for BSA system suggest optimal conditions for transport in the body
Mechanistic aspects of thioflavin-T self-aggregation and DNA binding: evidence for dimer attack on DNA grooves
Thioflavin-T (TFT) is a fluorescent marker widely employed in biomedical research but the mechanism of
its binding to polynucleotides has been poorly understood. This paper presents a study of the mechanisms
of TFT self-aggregation and binding to DNA. Relaxation kinetics of TFT solutions show that the cyanine
undergoes dimerization followed by dimer isomerisation. The interaction of TFT with DNA has been
investigated using static methods, such as spectrophotometric and spectrofluorometric titrations under
different conditions (salt content, temperature), fluorescence quenching, viscometric experiments and the
T-jump relaxation method. The combined use of these techniques enabled us to show that the TFT
monomer undergoes intercalation between the DNA base pairs and external binding according to a
branched mechanism. Moreover, it has also been observed that, under dye excess conditions, the TFT
dimer binds to the DNA grooves. The molecular structures of intercalated TFT and the groove-bound
TFT dimer are obtained by performing QM/MM MD simulations
On the Different Mode of Action of Au(I)/Ag(I)-NHC Bis-Anthracenyl Complexes Towards Selected Target Biomolecules
Gold and silver N-heterocyclic carbenes (NHCs) are emerging for therapeutic applications. Multiple techniques are here used to unveil the mechanistic details of the binding to different biosubstrates of bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene) silver chloride [Ag(EIA)2]Cl and bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene) gold chloride [Au(EIA)2]Cl. As the biosubstrates, we tested natural double-stranded DNA, synthetic RNA polynucleotides (single-poly(A), double-poly(A)poly(U) and triple-stranded poly(A)2poly(U)), DNA G-quadruplex structures (G4s), and bovine serum albumin (BSA) protein. Absorbance and fluorescence titrations, mass spectrometry together with melting and viscometry tests show significant differences in the binding features between silver and gold compounds. [Au(EIA)2]Cl covalently binds BSA. It is here evidenced that the selectivity is high: low affinity and external binding for all polynucleotides and G4s are found. Conversely, in the case of [Ag(EIA)2]Cl, the binding to BSA is weak and relies on electrostatic interactions. [Ag(EIA)2]Cl strongly/selectively interacts only with double strands by a mechanism where intercalation plays the major role, but groove binding is also operative. The absence of an interaction with triplexes indicates the major role played by the geometrical constraints to drive the binding mode
Adding Diversity to a Diruthenium Biscyclopentadienyl Scaffold via Alkyne Incorporation: Synthesis and Biological Studies
We report the synthesis and the assessment of the anticancer potential of two series of diruthenium biscyclopentadienyl carbonyl complexes. Novel dimetallacyclopentenone compounds (2-4) were obtained (45-92% yields) from the thermal reaction(PhCCPh exchange) of [Ru2Cp2(CO)(& mu;-CO){& mu;-& eta;(1):& eta;(3)-C(Ph)C(Ph)C(O)}], 1, with alkynes HCCR [R = C5H4FeCp (Fc),3-C6H4(Asp), 2-naphthyl; Cp = & eta;(5)-C5H5, Asp = OC(O)-2-C6H4C(O)Me]. Protonation of 1-3 by HBF4 afforded the corresponding & mu;-alkenyl derivatives 5-7, in 40-86% yields. All productswere characterized by IR and NMR spectroscopy; moreover, cyclic voltammetry(1, 2, 5, 7) andsingle-crystal X-ray diffraction (5, 7)analyses were performed on representative compounds. Complexes 5-7 revealed a cytotoxic activity comparableto that of cisplatin in A549 (lung adenocarcinoma), SW480 (colon adenocarcinoma),and ovarian (A2780) cancer cell lines, and 2, 5, 6, and 7 overcame cisplatin resistancein A2780cis cells. Complexes 2, 5, and 7 (but not the aspirin derivative 6) inducedan increase in intracellular ROS levels. Otherwise, 6 strongly stabilizes and elongates natural DNA (from calf thymus,CT-DNA), suggesting a possible intercalation binding mode, whereas 5 is less effective in binding CT-DNA, and 7 isineffective. This trend is reversed concerning RNA, and in particular, 7 is able to bind poly(rA)poly(rU) showing selectivity forthis nucleic acid. Complexes 5-7 caninteract with the albumin protein with a thermodynamic signature dominatedby hydrophobic interactions. Overall, we show that organometallicspecies based on the Ru2Cp2(CO)( x ) scaffold (x = 2, 3) are activeagainst cancer cells, with different incorporated fragments influencingthe interactions with nucleic acids and the production of ROS
Anticancer and antibacterial potential of robust Ruthenium(II) arene complexes regulated by choice of α-diimine and halide ligands
Several complexes of general formula [Ru(halide)(η6-p-cymene)(α-diimine)]+, in the form of nitrate, triflate and hexafluorophosphate salts, including a newly synthesized iodide compound, were investigated as potential anticancer drugs and bactericides. NMR and UV–Vis studies evidenced remarkable stability of the complexes in water and cell culture medium. In general, the complexes displayed strong cytotoxicity against A2780 and A549 cancer cell lines with IC50 values in the low micromolar range, and one complex (RUCYN) emerged as the most promising one, with a significant selectivity compared to the non-cancerous HEK293 cell line. A variable affinity of the complexes for BSA and DNA binding was ascertained by spectrophotometry/fluorimetry, circular dichroism, electrophoresis and viscometry. The performance of RUCYN appears associated to enhanced cell internalization, favored by two cyclohexyl substituents, rather than to specific interaction with the evaluated biomolecules. The chloride/iodide replacement, in one case, led to increased cellular uptake and cytotoxicity at the expense of selectivity, and tuned DNA binding towards intercalation. Complexes with iodide or a valproate bioactive fragment exhibited the best antimicrobial profiles
Detection of CO and HCN in Pluto's atmosphere with ALMA
Observations of the Pluto-Charon system, acquired with the ALMA
interferometer on June 12-13, 2015, have yielded a detection of the CO(3-2) and
HCN(4-3) rotational transitions from Pluto, providing a strong confirmation of
the presence of CO, and the first observation of HCN, in Pluto's atmosphere.
The CO and HCN lines probe Pluto's atmosphere up to ~450 km and ~900 km
altitude, respectively. The CO detection yields (i) a much improved
determination of the CO mole fraction, as 515+/-40 ppm for a 12 ubar surface
pressure (ii) clear evidence for a well-marked temperature decrease (i.e.,
mesosphere) above the 30-50 km stratopause and a best-determined temperature of
70+/-2 K at 300 km, in agreement with recent inferences from New Horizons /
Alice solar occultation data. The HCN line shape implies a high abundance of
this species in the upper atmosphere, with a mole fraction >1.5x10-5 above 450
km and a value of 4x10-5 near 800 km. The large HCN abundance and the cold
upper atmosphere imply supersaturation of HCN to a degree (7-8 orders of
magnitude) hitherto unseen in planetary atmospheres, probably due to the slow
kinetics of condensation at the low pressure and temperature conditions of
Pluto's upper atmosphere. HCN is also present in the bottom ~100 km of the
atmosphere, with a 10-8 - 10-7 mole fraction; this implies either HCN
saturation or undersaturation there, depending on the precise stratopause
temperature. The HCN column is (1.6+/-0.4)x10^14 cm-2, suggesting a
surface-referred net production rate of ~2x10^7 cm-2s-1. Although HCN
rotational line cooling affects Pluto's atmosphere heat budget, the amounts
determined in this study are insufficient to explain the well-marked mesosphere
and upper atmosphere's ~70 K temperature. We finally report an upper limit on
the HC3N column density (< 2x10^13 cm-2) and on the HC15N / HC14N ratio (<
1/125).Comment: Revised version. Icarus, in press, Oct. 11, 2016. 57 pages, including
13 figures and 4 table
Isotopic ratios of H, C, N, O, and S in comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy)
The apparition of bright comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) in
March-April 2013 and January 2015, combined with the improved observational
capabilities of submillimeter facilities, offered an opportunity to carry out
sensitive compositional and isotopic studies of the volatiles in their coma. We
observed comet Lovejoy with the IRAM 30m telescope between 13 and 26 January
2015, and with the Odin submillimeter space observatory on 29 January - 3
February 2015. We detected 22 molecules and several isotopologues. The
HO and HO production rates measured with Odin follow a
periodic pattern with a period of 0.94 days and an amplitude of ~25%. The
inferred isotope ratios in comet Lovejoy are O/O = 499 24
and D/H = 1.4 0.4 in water, S/S = 24.7
3.5 in CS, all compatible with terrestrial values. The ratio
C/C = 109 14 in HCN is marginally higher than terrestrial
and N/N = 145 12 in HCN is half the Earth ratio. Several
upper limits for D/H or 12C/13C in other molecules are reported. From our
observation of HDO in comet C/2014 Q2 (Lovejoy), we report the first D/H ratio
in an Oort Cloud comet that is not larger than the terrestrial value. On the
other hand, the observation of the same HDO line in the other Oort-cloud comet,
C/2012 F6 (Lemmon), suggests a D/H value four times higher. Given the previous
measurements of D/H in cometary water, this illustrates that a diversity in the
D/H ratio and in the chemical composition, is present even within the same
dynamical group of comets, suggesting that current dynamical groups contain
comets formed at very different places or times in the early solar system.Comment: Accepted for publication in Astronomy and Astrophysic
- …