16,032 research outputs found

    Buckling of built-up columns of pultruded fiber-reinforced polymer C-sections

    Get PDF
    This paper presents the test results of an experimental investigation to evaluate the buckling behavior of built-up columns of pultruded profiles, subjected to axial compression. Specimens are assembled by using four (off the shelf) channel shaped profiles of E-glass fiber-reinforced polymer (FRP), having similar detailing to strut members in a large FRP structure that was executed in 2009 to start the restoration of the Santa Maria Paganica church in L’Aquila, Italy. This church had partially collapsed walls and no roof after the April 6, 2009, earthquake of 6.3 magnitude. A total of six columns are characterized with two different configurations for the bolted connections joining the channel sections into a built-up strut. Test results are discussed and a comparison is made with closed-form equation predictions for flexural buckling resistance, with buckling resistance values established from both eigenvalue and geometric nonlinear finite element analyses. Results show that there is a significant role played by the end loading condition, the composite action, and imperfections. Simple closed-form equations overestimate the flexural buckling strength, whereas the resistance provided by the nonlinear analysis provides a reasonably reliable numerical approach to establishing the actual buckling behavior

    Towards Quantum Cosmology without Singularities

    Get PDF
    In this paper we investigate the vanishing of cosmological singularities by quantization. Starting from a 5d Kaluza--Klein approach we quantize, as a first step, the non--spherical metric part and the dilaton field. These fields which are classically singular become smooth after quantization. In addition, we argue that the incorporation of non perturbative quantum corrections form a dilaton potential. Technically, the procedure corresponds to the quantization of 2d dilaton gravity and we discuss several models. From the 4d point of view this procedure is a semiclassical approach where only the dilaton and moduli matter fields are quantized.Comment: 9 pages, 2 figures, Latex, epsfig.sty, epsf.te

    Consequence of Hawking radiation from 2d dilaton black holes

    Get PDF
    We investigate the CGHS model through numerical calculation. The behavior of the mass function, which we introduced in our previous work as a ``local mass'', is examined. We found that the mass function takes negative values, which means that the amount of Hawking radiation becomes greater than the initial mass of the black hole as in the case of the RST model.Comment: 17pages, 5 figures (three of them are attached, the other 2 figures are available on request. Some mistakes including typographic errors have been correcte

    Universality and Scaling at the Onset of Quantum Black Hole Formation

    Full text link
    In certain two-dimensional models, collapsing matter forms a black hole if and only if the incoming energy flux exceeds the Hawking radiation rate. Near the critical threshold, the black hole mass is given by a universal formula in terms of the distance from criticality, and there exists a scaling solution describing the formation and evaporation of an arbitrarily small black hole.Comment: 9 pages, 3 figures (uuencoded

    D-Brane Probe and Closed String Tachyons

    Full text link
    We consider a D-brane probe in unstable string background associated with flux branes. The twist in spacetime metric reponsible for the supersymmetry breaking is shown to manifest itself in mixing of open Wilson lines with the phases of some adjoint matter fields, resulting in a nonlocal and nonsupersymmetric form of Yang-Mills theory as the probe dynamics. This provides a setup where one can study fate of a large class of unstable closed string theories that include as a limit type 0 theories and various orbifolds of type II and type 0 theories. We discuss the limit of C/Zn{\bf C}/Z_n orbifold in some detail and speculate on couplings with closed string tachyons.Comment: LaTeX, 17 pages, typos fixed, references update

    A theory of quantum black holes: non-perturbative corrections and no-veil conjecture

    Get PDF
    A common belief is that further quantum corrections near the singularity of a large black hole should not substantially modify the semiclassical picture of black hole evaporation; in particular, the outgoing spectrum of radiation should be very close to the thermal spectrum predicted by Hawking. In this paper we explore a possible counterexample: in the context of dilaton gravity, we find that non-perturbative quantum corrections which are important in strong coupling regions may completely alter the semiclassical picture, to the extent that the presumptive space-like boundary becomes time-like, changing in this way the causal structure of the semiclassical geometry. As a result, only a small fraction of the total energy is radiated outside the fake event horizon; most of the energy comes in fact at later retarded times and there is no information loss problem. Thus we propose that this may constitute a general characteristic of quantum black holes, that is, quantum gravity might be such as to prevent the formation of global event horizons. We argue that this is not unnatural from the viewpoint of quantum mechanics.Comment: 24 pages, 12 figures (not included, available by request), UTTG-22-9

    Experimental observation of bias-dependent non-local Andreev reflection

    Full text link
    We investigate transport through hybrid structures consisting of two normal metal leads connected via tunnel barriers to one common superconducting electrode. We find clear evidence for the occurrence of non-local Andreev reflection and elastic cotunneling through superconductor when the separation of the tunnel barrier is comparable to the superconducting coherence length. The probability of the two processes is energy dependent, with elastic cotunneling dominating at low energy and non-local Andreev reflection at higher energies. The energy scale of the crossover is found to be the Thouless energy of the superconductor, which indicates the phase coherence of the processes. Our results are relevant for the realization of recently proposed entangler devices.Comment: 4 pages, 4 figures. Accepted for publication in PR

    Two Dimensional Quantum Dilaton Gravity and the Positivity of Energy

    Full text link
    Using an argument due to Regge and Teitelboim, an expression for the ADM mass of 2d quantum dilaton gravity is obtained. By evaluating this expression we establish that the quantum theories which can be written as a Liouville-like theory, have a lower bound to energy, provided there is no critical boundary. This fact is then reconciled with the observation made earlier that the Hawking radiation does not appear to stop. The physical picture that emerges is that of a black hole in a bath of quantum radiation. We also evaluate the ADM mass for the models with RST boundary conditions and find that negative values are allowed. The Bondi mass of these models goes to zero for large retarded times, but becomes negative at intermediate times in a manner that is consistent with the thunderpop of RST.Comment: 16 pages, phyzzx, COLO-HEP-309. (Confusing points in previous version clarified, discussion of ADM and Bondi masses in RST case added.

    Initial singularity free quantum cosmology in two-dimensional Brans-Dicke theory

    Get PDF
    We consider two-dimensional Brans-Dicke theory to study the initial singularity problem. It turns out that the initial curvature singularity can be finite for a certain Brans-Dicke constant ω\omega by considering the quantum back reaction of the geometry. For ω=1\omega=1, the universe starts with the finite curvature scalar and evolves into the flat spacetime. Furthermore the divergent gravitational coupling at the initial time can be finite effectively with the help of quantum correction. The other type of universe is studied for the case of 0<ω<10<\omega<1.Comment: 12 pages, 4 figures, revtex, Some references are added. To be published in Phys. Rev.

    Widening use of dexamethasone implant for the treatment of macular edema

    Get PDF
    Sustained-release intravitreal 0.7 mg dexamethasone (DEX) implant is approved in Europe for the treatment of macular edema related to diabetic retinopathy, branch retinal vein occlusion, central retinal vein occlusion, and non-infectious uveitis. The implant is formulated in a biodegradable copolymer to release the active ingredient within the vitreous chamber for up to 6 months after an intravitreal injection, allowing a prolonged interval of efficacy between injections with a good safety profile. Various other ocular pathologies with inflammatory etio­pathogeneses associated with macular edema have been treated by DEX implant, including neovascular age-related macular degeneration, Irvine–Gass syndrome, vasoproliferative retinal tumors, retinal telangiectasia, Coats’ disease, radiation maculopathy, retinitis pigmentosa, and macular edema secondary to scleral buckling and pars plana vitrectomy. We undertook a review to provide a comprehensive collection of all of the diseases that benefit from the use of the sustained-release DEX implant, alone or in combination with concomitant therapies. A MEDLINE search revealed lack of randomized controlled trials related to these indications. Therefore we included and analyzed all available studies (retrospective and prospective, com­parative and non-comparative, randomized and nonrandomized, single center and multicenter, and case report). There are reports in the literature of the use of DEX implant across a range of macular edema-related pathologies, with their clinical experience supporting the use of DEX implant on a case-by-case basis with the aim of improving patient outcomes in many macular pathologies. As many of the reported macular pathologies are difficult to treat, a new treat­ment option that has a beneficial influence on the clinical course of the disease may be useful in clinical practice
    • …
    corecore