277 research outputs found

    Tree analysis code /TRACE/ program E64106. NERVA program

    Get PDF
    Computer program for Monte Carlo simulation of fault trees in analysis of large complex system

    Tree analysis code (TRACE) program E64106

    Get PDF

    Difficulty in diagnosing the pathological nature of an acute fracture of the clavicle: a case report

    Get PDF
    Fractures of the clavicle comprise between 5% to10% of all fractures. Medial clavicular fractures are uncommon and are normally caused by high-energy trauma. A low impact mechanism of injury should raise suspicion of a pathological fracture, but this case report highlights the difficulty in diagnosing the pathological nature of an acute fracture of the clavicle. We describe a patient who presented with a medial clavicular fracture after a simple fall but the fracture was diagnosed as pathological in retrospect four months after the initial presentation. We would also like to emphasise that the medial clavicle is the most frequent site of pathological fractures of the clavicle, and the possibility of an underlying pathological condition should be considered whenever a patient with a medial clavicular fracture is encountered

    Activation of Src Mediates PDGF-Induced Smad1 Phosphorylation and Contributes to the Progression of Glomerulosclerosis in Glomerulonephritis

    Get PDF
    Platelet-derived growth factor (PDGF) plays critical roles in mesangial cell (MC) proliferation in mesangial proliferative glomerulonephritis. We showed previously that Smad1 contributes to PDGF-dependent proliferation of MCs, but the mechanism by which Smad1 is activated by PDGF is not precisely known. Here we examined the role of c-Src tyrosine kinase in the proliferative change of MCs. Experimental mesangial proliferative glomerulonephritis (Thy1 GN) was induced by a single intravenous injection of anti-rat Thy-1.1 monoclonal antibody. In Thy1 GN, MC proliferation and type IV collagen (Col4) expression peaked on day 6. Immunohistochemical staining for the expression of phospho-Src (pSrc), phospho-Smad1 (pSmad1), Col4, and smooth muscle α-actin (SMA) revealed that the activation of c-Src and Smad1 signals in glomeruli peaked on day 6, consistent with the peak of mesangial proliferation. When treated with PP2, a Src inhibitor, both mesangial proliferation and sclerosis were significantly reduced. PP2 administration also significantly reduced pSmad1, Col4, and SMA expression. PDGF induced Col4 synthesis in association with increased expression of pSrc and pSmad1 in cultured MCs. In addition, PP2 reduced Col4 synthesis along with decreased pSrc and pSmad1 protein expression in vitro. Moreover, the addition of siRNA against c-Src significantly reduced the phosphorylation of Smad1 and the overproduction of Col4. These results provide new evidence that the activation of Src/Smad1 signaling pathway plays a key role in the development of glomerulosclerosis in experimental glomerulonephritis

    Three lateral osteotomy designs for bilateral sagittal split osteotomy: biomechanical evaluation with three-dimensional finite element analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The location of the lateral osteotomy cut during bilateral sagittal split osteotomy (BSSO) varies according to the surgeon's preference, and no consensus has been reached regarding the ideal location from the perspective of biomechanics. The purpose of this study was to evaluate the mechanical behavior of the mandible and screw-miniplate system among three lateral osteotomy designs for BSSO by using three-dimensional (3-D) finite element analysis (FEA).</p> <p>Methods</p> <p>The Trauner-Obwegeser (TO), Obwegeser (Ob), and Obwegeser-Dal Pont (OD) methods were used for BSSO. In all the FEA simulations, the distal segments were advanced by 5 mm. Each model was fixed by using miniplates. These were applied at four different locations, including along Champy's lines, to give 12 different FEA miniplate fixation methods. We examined these models under two different loads.</p> <p>Results</p> <p>The magnitudes of tooth displacement, the maximum bone stress in the vicinity of the screws, and the maximum stress on the screw-miniplate system were less in the OD method than in the Ob and TO methods at all the miniplate locations. In addition, Champy's lines models were less than those at the other miniplate locations.</p> <p>Conclusions</p> <p>The OD method allows greater mechanical stability of the mandible than the other two techniques. Further, miniplates placed along Champy's lines provide greater mechanical advantage than those placed at other locations.</p

    Cold adaptation drives population genomic divergence in the ecological specialist, Drosophila montana

    Get PDF
    Funding: UK Natural Environment Research Council (Grant Number(s): NE/L501852/1, NE/P000592/1); Academy of Finland (GrantNumber(s): 267244, 268214, 322980), Ella ja Georg Ehrnroothin Säätiö.Detecting signatures of ecological adaptation in comparative genomics is challenging, but analysing population samples with characterised geographic distributions, such as clinal variation, can help identify genes showing covariation with important ecological variation. Here, we analysed patterns of geographic variation in the cold-adapted species Drosophila montana across phenotypes, genotypes and environmental conditions and tested for signatures of cold adaptation in population genomic divergence. We first derived the climatic variables associated with the geographic distribution of 24 populations across two continents to trace the scale of environmental variation experienced by the species, and measured variation in the cold tolerance of the flies of six populations from different geographic contexts. We then performed pooled whole genome sequencing of these six populations, and used Bayesian methods to identify SNPs where genetic differentiation is associated with both climatic variables and the population phenotypic measurements, while controlling for effects of demography and population structure. The top candidate SNPs were enriched on the X and fourth chromosomes, and they also lay near genes implicated in other studies of cold tolerance and population divergence in this species and its close relatives. We conclude that ecological adaptation has contributed to the divergence of D. montana populations throughout the genome and in particular on the X and fourth chromosomes, which also showed highest interpopulation FST. This study demonstrates that ecological selection can drive genomic divergence at different scales, from candidate genes to chromosome-wide effects.Publisher PDFPeer reviewe

    Long-Term Cold Acclimation Extends Survival Time at 0°C and Modifies the Metabolomic Profiles of the Larvae of the Fruit Fly Drosophila melanogaster

    Get PDF
    Drosophila melanogaster is a chill-susceptible insect. Previous studies on this fly focused on acute direct chilling injury during cold shock and showed that lower lethal temperature (LLT, approximately -5°C) exhibits relatively low plasticity and that acclimations, both rapid cold hardening (RCH) and long-term cold acclimation, shift the LLT by only a few degrees at the maximum.We found that long-term cold acclimation considerably improved cold tolerance in fully grown third-instar larvae of D. melanogaster. A comparison of the larvae acclimated at constant 25°C with those acclimated at constant 15°C followed by constant 6°C for 2 d (15°C→6°C) showed that long-term cold acclimation extended the lethal time for 50% of the population (Lt(50)) during exposure to constant 0°C as much as 630-fold (from 0.137 h to 86.658 h). Such marked physiological plasticity in Lt(50) (in contrast to LLT) suggested that chronic indirect chilling injury at 0°C differs from that caused by cold shock. Long-term cold acclimation modified the metabolomic profiles of the larvae. Accumulations of proline (up to 17.7 mM) and trehalose (up to 36.5 mM) were the two most prominent responses. In addition, restructuring of the glycerophospholipid composition of biological membranes was observed. The relative proportion of glycerophosphoethanolamines (especially those with linoleic acid at the sn-2 position) increased at the expense of glycerophosphocholines.Third-instar larvae of D. melanogaster improved their cold tolerance in response to long-term cold acclimation and showed metabolic potential for the accumulation of proline and trehalose and for membrane restructuring

    The vitamin D, ionised calcium and parathyroid hormone axis of cerebral capillary function: Therapeutic considerations for vascular-based neurodegenerative disorders

    Get PDF
    Blood-brain barrier dysfunction characterised by brain parenchymal extravasation of plasma proteins may contribute to risk of neurodegenerative disorders, however the mechanisms for increased capillary permeability are not understood. Increasing evidence suggests vitamin D confers central nervous system benefits and there is increasing demand for vitamin D supplementation. Vitamin D may influence the CNS via modulation of capillary function, however such effects may be indirect as it has a central role in maintaining calcium homeostasis, in concert with calcium regulatory hormones. This study utilised an integrated approach and investigated the effects of vitamin D supplementation, parathyroid tissue ablation (PTX), or exogenous infusion of parathyroid hormone (PTH) on cerebral capillary integrity. Parenchymal extravasation of immunoglobulin G (IgG) was used as a marker of cerebral capillary permeability. In C57BL/6J mice and Sprague Dawley rats, dietary vitamin D was associated with exaggerated abundance of IgG within cerebral cortex (CTX) and hippocampal formation (HPF). Vitamin D was also associated with increased plasma ionised calcium (iCa) and decreased PTH. A response to dose was suggested and parenchymal effects persisted for up to 24 weeks. Ablation of parathyroid glands increased CTX- and HPF-IgG abundance concomitant with a reduction in plasma iCa. With the provision of PTH, iCa levels increased, however the PTH treated animals did not show increased cerebral permeability. Vitamin D supplemented groups and rats with PTH-tissue ablation showed modestly increased parenchymal abundance of glial-fibrillary acidic protein (GFAP), a marker of astroglial activation. PTH infusion attenuated GFAP abundance. The findings suggest that vitamin D can compromise capillary integrity via a mechanism that is independent of calcium homeostasis. The effects of exogenous vitamin D supplementation on capillary function and in the context of prevention of vascular neurodegenerative conditions should be considered in the context of synergistic effects with calcium modulating hormones
    corecore