35 research outputs found

    The mechanisms of humic substances self-assembly with biological molecules: The case study of the prion protein

    Get PDF
    Humic substances (HS) are the largest constituent of soil organic matter and are considered as a key component of the terrestrial ecosystem. HS may facilitate the transport of organic and inorganic molecules, as well as the sorption interactions with environmentally relevant proteins such as prions. Prions enter the environment through shedding from live hosts, facilitating a sustained incidence of animal prion diseases such as Chronic Wasting Disease and scrapie in cervid and ovine populations, respectively. Changes in prion structure upon environmental exposure may be significant as they can affect prion infectivity and disease pathology. Despite its relevance, the mechanisms of prion interaction with HS are still not completely understood. The goal of this work is to advance a structural-level picture of the encapsulation of recombinant, non-infectious, prion protein (PrP) into different natural HS. We observed that PrP precipitation upon addition of HS is mainly driven by a mechanism of “salting-out” whereby PrP molecules are rapidly removed from the solution and aggregate in insoluble adducts with humic molecules. Importantly, this process does not alter the protein folding since insoluble PrP retains its α-helical content when in complex with HS. The observed ability of HS to promote PrP insolubilization without altering its secondary structure may have potential relevance in the context of “prion ecology”. These results suggest that soil organic matter interacts with prions possibly without altering the protein structures. This may facilitate prions preservation from biotic and abiotic degradation leading to their accumulation in the environment

    Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease

    Get PDF
    BACKGROUND: The cholesteryl ester transfer protein inhibitor evacetrapib substantially raises the high-density lipoprotein (HDL) cholesterol level, reduces the low-density lipoprotein (LDL) cholesterol level, and enhances cellular cholesterol efflux capacity. We sought to determine the effect of evacetrapib on major adverse cardiovascular outcomes in patients with high-risk vascular disease. METHODS: In a multicenter, randomized, double-blind, placebo-controlled phase 3 trial, we enrolled 12,092 patients who had at least one of the following conditions: an acute coronary syndrome within the previous 30 to 365 days, cerebrovascular atherosclerotic disease, peripheral vascular arterial disease, or diabetes mellitus with coronary artery disease. Patients were randomly assigned to receive either evacetrapib at a dose of 130 mg or matching placebo, administered daily, in addition to standard medical therapy. The primary efficacy end point was the first occurrence of any component of the composite of death from cardiovascular causes, myocardial infarction, stroke, coronary revascularization, or hospitalization for unstable angina. RESULTS: At 3 months, a 31.1% decrease in the mean LDL cholesterol level was observed with evacetrapib versus a 6.0% increase with placebo, and a 133.2% increase in the mean HDL cholesterol level was seen with evacetrapib versus a 1.6% increase with placebo. After 1363 of the planned 1670 primary end-point events had occurred, the data and safety monitoring board recommended that the trial be terminated early because of a lack of efficacy. After a median of 26 months of evacetrapib or placebo, a primary end-point event occurred in 12.9% of the patients in the evacetrapib group and in 12.8% of those in the placebo group (hazard ratio, 1.01; 95% confidence interval, 0.91 to 1.11; P=0.91). CONCLUSIONS: Although the cholesteryl ester transfer protein inhibitor evacetrapib had favorable effects on established lipid biomarkers, treatment with evacetrapib did not result in a lower rate of cardiovascular events than placebo among patients with high-risk vascular disease. (Funded by Eli Lilly; ACCELERATE ClinicalTrials.gov number, NCT01687998 .)

    Voltammetric Determination of 5‐Aminoquinoline at Carbon Film Electrode and Carbon and Gold Screen Printed Electrodes – A Comparative Study

    No full text
    Aminoquinolines are widely used as antimalarial drugs and thus there is an ever increasing demand for their determination. In this paper, non-traditional carbon film electrode developed in our laboratory (CFE) with easily replaceable carbon film was used for the determination of 5-aminoquinoline (5-AQ) and compared with well-established commercially available carbon screen printed electrode (CSPE) and gold screen printed electrode (AuSPE). Electrochemical behavior of 5-AQ was characterized by cyclic and differential pulse voltammetry. Differences in electrochemical behavior of 5-AQ at different electrodes were evaluated. Determination of 5-AQ was carried out by differential pulse, square wave, and direct current voltammetry. Practical applicability of the method was verified by direct determination of 5-AQ in model samples of drinking and river water. Achieved limits of quantitation were in submicromolar concentrations. It was found out that novel CFE in terms of overall performance is in most aspects superior to routinely used commercially available CSPE and AuSPE
    corecore