421 research outputs found

    INFLUENCE OF BIOSTIMULANT ON SEED GERMINATION OF SOME FLOWER SPECIES

    Get PDF
    U ovom istraživanju ispitan je učinak biostimulatora na energiju klijanja, klijavost, masu svježe i suhe tvari klijanaca kod prkosa, slamnatog cvijeta, kadife i cinije. Energija klijanja i klijavost su ispitane laboratorijski, a po završetku ispitivanja obavljeno je mjerenje svježe i suhe tvari klijanaca. Statističkom obradom podataka analizom varijance utvrđeno je da tretman biostimulatorima pozitivno utječe na poboljšanje energije klijanja, a kod nekih vrsta i na klijavost. Mase svježe i suhe tvari klijanaca su uglavnom bile na strani tretmana sa biostimulatorom, pogotovo kada je u pitanju masa svježe tvari što govori u prilog pojačanom usvajanju vode i boljoj aktivnosti korijena u fazi klijanja koje može biti od presudnog značaja za preživljavanje klijanaca. Na kraju istraživanja može se zaključiti da je tretman biostimulatorima u fazi klijanja ispitivanih vrsta dao pozitivan učinak na ispitivana svojstva.In this research influence of biostimulant on germination energy, germination, seedlings fresh matter content and dry matter content of Moss rose, Strawflower, Mexican marigold and Zinnia was investigated. Germination energy and germination were tested in laboratory and by finishing the testing seedlings fresh matter content and dry matter content were recorded. Statistical analysis of data using analysis of variance method showed that treatment with biostimulant positively affects on germination energy and by some species on germination as well. Seedlings fresh and dry matter content were mostly higher in treated plants, especially in case of fresh matter content. This leads to assumption of higher water absorption and higher root activity in germination phase which can be of crucial significance for seedlings survival. At the end of investigation it can be concluded that treatment with biostimulant in germination phase of mentioned species gave positive results in the first place by increasing germination energy and seedlings fresh matter content

    Acute promyelocytic leukemia after whole brain irradiation of primary brain lymphomainan HIV-infected patient

    Get PDF
    The occurrence of acute promyelocytic leukemia (APL) in HIV-infected patients has been reported in only five cases. Due to a very small number of reported HIV/APL patients who have been treated with different therapies with the variable outcome, the prognosis of APL in the setting of the HIV-infection is unclear. Here, we report a case of an HIV-patient who developed APL and upon treatment entered a complete remission. A 25-years old male patient was diagnosed with HIV-infection in 1996, but remained untreated. In 2004, the patient was diagnosed with primary central nervous system lymphoma. We treated the patient with antiretroviral therapy and whole-brain irradiation, resulting in complete remission of the lymphoma. In 2006, prompted by a sudden neutropenia, we carried out a set of diagnostic procedures, revealing APL. Induction therapy consisted of standard treatment with all-trans-retinoic-acid (ATRA) and idarubicin. Subsequent cytological and molecular analysis of bone marrow demonstrated complete hematological and molecular remission. Due to the poor general condition, consolidation treatment with ATRA was given in March and April 2007. The last follow-up 14 months later, showed sustained molecular APL remission. In conclusion, we demonstrated that a complete molecular APL remission in an HIV-patient was achieved by using reduced-intensity treatment

    Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites

    Get PDF
    The positions of nucleosomes in eukaryotic genomes determine which parts of the DNA sequence are readily accessible for regulatory proteins and which are not. Genome-wide maps of nucleosome positions have revealed a salient pattern around transcription start sites, involving a nucleosome-free region (NFR) flanked by a pronounced periodic pattern in the average nucleosome density. While the periodic pattern clearly reflects well-positioned nucleosomes, the positioning mechanism is less clear. A recent experimental study by Mavrich et al. argued that the pattern observed in S. cerevisiae is qualitatively consistent with a `barrier nucleosome model', in which the oscillatory pattern is created by the statistical positioning mechanism of Kornberg and Stryer. On the other hand, there is clear evidence for intrinsic sequence preferences of nucleosomes, and it is unclear to what extent these sequence preferences affect the observed pattern. To test the barrier nucleosome model, we quantitatively analyze yeast nucleosome positioning data both up- and downstream from NFRs. Our analysis is based on the Tonks model of statistical physics which quantifies the interplay between the excluded-volume interaction of nucleosomes and their positional entropy. We find that although the typical patterns on the two sides of the NFR are different, they are both quantitatively described by the same physical model, with the same parameters, but different boundary conditions. The inferred boundary conditions suggest that the first nucleosome downstream from the NFR (the +1 nucleosome) is typically directly positioned while the first nucleosome upstream is statistically positioned via a nucleosome-repelling DNA region. These boundary conditions, which can be locally encoded into the genome sequence, significantly shape the statistical distribution of nucleosomes over a range of up to ~1000 bp to each side.Comment: includes supporting materia

    A hybrid method for accurate iris segmentation on at-a-distance visible-wavelength images

    Full text link
    [EN] This work describes a new hybrid method for accurate iris segmentation from full-face images independently of the ethnicity of the subject. It is based on a combination of three methods: facial key-point detection, integro-differential operator (IDO) and mathematical morphology. First, facial landmarks are extracted by means of the Chehra algorithm in order to obtain the eye location. Then, the IDO is applied to the extracted sub-image containing only the eye in order to locate the iris. Once the iris is located, a series of mathematical morphological operations is performed in order to accurately segment it. Results are obtained and compared among four different ethnicities (Asian, Black, Latino and White) as well as with two other iris segmentation algorithms. In addition, robustness against rotation, blurring and noise is also assessed. Our method obtains state-of-the-art performance and shows itself robust with small amounts of blur, noise and/or rotation. Furthermore, it is fast, accurate, and its code is publicly available.Fuentes-Hurtado, FJ.; Naranjo Ornedo, V.; Diego-Mas, JA.; Alcañiz Raya, ML. (2019). A hybrid method for accurate iris segmentation on at-a-distance visible-wavelength images. EURASIP Journal on Image and Video Processing (Online). 2019(1):1-14. https://doi.org/10.1186/s13640-019-0473-0S11420191A. Radman, K. Jumari, N. Zainal, Fast and reliable iris segmentation algorithm. IET Image Process.7(1), 42–49 (2013).M. Erbilek, M. Fairhurst, M. C. D. C Abreu, in 5th International Conference on Imaging for Crime Detection and Prevention (ICDP 2013). Age prediction from iris biometrics (London, 2013), pp. 1–5. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6913712&isnumber=6867223 .A. Abbasi, M. Khan, Iris-pupil thickness based method for determining age group of a person. Int. Arab J. Inf. Technol. (IAJIT). 13(6) (2016).G. Mabuza-Hocquet, F. Nelwamondo, T. Marwala, in Intelligent Information and Database Systems. ed. by N. Nguyen, S. Tojo, L. Nguyen, B. Trawiński. Ethnicity Distinctiveness Through Iris Texture Features Using Gabor Filters. ACIIDS 2017. Lecture Notes in Computer Science, vol. 10192 (Springer, Cham, 2017).S. Lagree, K. W. Bowyer, in 2011 IEEE International Conference on Technologies for Homeland Security (HST). Predicting ethnicity and gender from iris texture (IEEEWaltham, 2011). p. 440–445. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6107909&isnumber=6107829 .J. G. Daugman, High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell.15(11), 1148–1161 (1993).N. Kourkoumelis, M. Tzaphlidou. Medical Safety Issues Concerning the Use of Incoherent Infrared Light in Biometrics, eds. A. Kumar, D. Zhang. Ethics and Policy of Biometrics. ICEB 2010. Lecture Notes in Computer Science, vol 6005 (Springer, Berlin, Heidelberg, 2010).R. P. Wildes, Iris recognition: an emerging biometric technology. Proc. IEEE. 85(9), 1348–1363 (1997).M. Kass, A. Witkin, D. Terzopoulos, Snakes: Active contour models. Int. J. Comput. Vision. 1(4), 321–331 (1988).S. J. Pundlik, D. L. Woodard, S. T. Birchfield, in 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Non-ideal iris segmentation using graph cuts (IEEEAnchorage, 2008). p. 1–6. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4563108&isnumber=4562948 .H. Proença, Iris recognition: On the segmentation of degraded images acquired in the visible wavelength. IEEE Trans. Pattern Anal. Mach. Intell.32(8), 1502–1516 (2010). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5156505&isnumber=5487331 .T. Tan, Z. He, Z. Sun, Efficient and robust segmentation of noisy iris images for non-cooperative iris recognition. Image Vision Comput.28(2), 223–230 (2010).C. -W. Tan, A. Kumar, in CVPR 2011 WORKSHOPS. Automated segmentation of iris images using visible wavelength face images (Colorado Springs, 2011). p. 9–14. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5981682&isnumber=5981671 .Y. -H. Li, M. Savvides, An automatic iris occlusion estimation method based on high-dimensional density estimation. IEEE Trans. Pattern Anal. Mach. Intell.35(4), 784–796 (2013).M. Yahiaoui, E. Monfrini, B. Dorizzi, Markov chains for unsupervised segmentation of degraded nir iris images for person recognition. Pattern Recogn. Lett.82:, 116–123 (2016).A. Radman, N. Zainal, S. A. Suandi, Automated segmentation of iris images acquired in an unconstrained environment using hog-svm and growcut. Digit. Signal Proc.64:, 60–70 (2017).N. Liu, H. Li, M. Zhang, J. Liu, Z. Sun, T. Tan, in 2016 International Conference on Biometrics (ICB). Accurate iris segmentation in non-cooperative environments using fully convolutional networks (Halmstad, 2016). p. 1–8. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7550055&isnumber=7550036 .Z. Zhao, A. Kumar, in 2017 IEEE International Conference on Computer Vision (ICCV). Towards more accurate iris recognition using deeply learned spatially corresponding features (Venice, 2017). p. 3829–3838. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237673&isnumber=8237262 .P. Li, X. Liu, L. Xiao, Q. Song, Robust and accurate iris segmentation in very noisy iris images. Image Vision Comput.28(2), 246–253 (2010).D. S. Jeong, J. W. Hwang, B. J. Kang, K. R. Park, C. S. Won, D. -K. Park, J. Kim, A new iris segmentation method for non-ideal iris images. Image Vision Comput.28(2), 254–260 (2010).Y. Chen, M. Adjouadi, C. Han, J. Wang, A. Barreto, N. Rishe, J. Andrian, A highly accurate and computationally efficient approach for unconstrained iris segmentation. Image Vision Comput. 28(2), 261–269 (2010).Z. Zhao, A. Kumar, in 2015 IEEE International Conference on Computer Vision (ICCV). An accurate iris segmentation framework under relaxed imaging constraints using total variation model (Santiago, 2015). p. 3828–3836. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7410793&isnumber=7410356 .Y. Hu, K. Sirlantzis, G. Howells, Improving colour iris segmentation using a model selection technique. Pattern Recogn. Lett.57:, 24–32 (2015).E. Ouabida, A. Essadique, A. Bouzid, Vander lugt correlator based active contours for iris segmentation and tracking. Expert Systems Appl.71:, 383–395 (2017).C. -W. Tan, A. Kumar, Unified framework for automated iris segmentation using distantly acquired face images. IEEE Trans. Image Proc.21(9), 4068–4079 (2012).C. -W. Tan, A. Kumar, in Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). Human identification from at-a-distance images by simultaneously exploiting iris and periocular features (Tsukuba, 2012). p. 553–556. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460194&isnumber=6460043 .C. -W. Tan, A. Kumar, Towards online iris and periocular recognition under relaxed imaging constraints. IEEE Trans. Image Proc.22(10), 3751–3765 (2013).K. Y. Shin, Y. G. Kim, K. R. Park, Enhanced iris recognition method based on multi-unit iris images. Opt. Eng.52(4), 047201–047201 (2013).CASIA iris databases. http://biometrics.idealtest.org/ . Accessed 06 Sept 2017.WVU iris databases. hhttp://biic.wvu.edu/data-sets/synthetic-iris-dataset . Accessed 06 Sept 2017.UBIRIS iris database. http://iris.di.ubi.pt . Accessed 06 Sept 2017.MICHE iris database. http://biplab.unisa.it/MICHE/ . Accessed 06 Sept 2017.P. J. Phillips, et al, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 1. Overview of the face recognition grand challenge (San Diego, 2005). p. 947–954. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1467368&isnumber=31472 .D. S. Ma, J. Correll, B. Wittenbrink, The chicago face database: A free stimulus set of faces and norming data. Behav. Res. Methods. 47(4), 1122–1135 (2015).P. Soille, Morphological Image Analysis: Principles and Applications (Springer, 2013).A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Inc., Englewood Cliffs, 1989).J. Daugman, How iris recognition works. IEEE Trans. Circ. Syst. Video Technol.14(1), 21–30 (2004).A. Asthana, S. Zafeiriou, S. Cheng, M. Pantic, in 2014 IEEE Conference on Computer Vision and Pattern Recognition. Incremental face alignment in the wild (Columbus, 2014). p. 1859–1866. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6909636&isnumber=6909393 .T. Baltrusaitis, P. Robinson, L. -P. Morency, in 2013 IEEE International Conference on Computer Vision Workshops. Constrained local neural fields for robust facial landmark detection in the wild (Sydney, 2013). p. 354–361. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6755919&isnumber=6755862 .X. Zhu, D. Ramanan, in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference On. Face detection, pose estimation, and landmark localization in the wild (IEEEBerlin Heidelberg, 2012), pp. 2879–2886.G. Tzimiropoulos, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Project-out cascaded regression with an application to face alignment (Boston, 2015). p. 3659–3667. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298989&isnumber=7298593 .H. Hofbauer, F. Alonso-Fernandez, P. Wild, J. Bigun, A. Uhl, in 2014 22nd International Conference on Pattern Recognition. A ground truth for iris segmentation (Stockholm, 2014). p. 527–532. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6976811&isnumber=6976709 .H. Proença, L. A. Alexandre, in 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems. The NICE.I: Noisy Iris Challenge Evaluation - Part I (Crystal City, 2007). p. 1–4. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4401910&isnumber=4401902 .J. Daugman, in European Convention on Security and Detection. High confidence recognition of persons by rapid video analysis of iris texture, (1995). p. 244–251. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=491729&isnumber=10615 .Code of Matlab implementation of Daugman’s integro-differential operator (IDO). https://es.mathworks.com/matlabcentral/fileexchange/15652-iris-segmentation-using-daugman-s-integrodifferential-operator/ . Accessed 06 Sept 2017.Code of Matlab implementation of Zhao and Kumar’s iris segmentation framework under relaxed imaging constraints using total variation model. http://www4.comp.polyu.edu.hk/~csajaykr/tvmiris.htm/ . Accessed 06 Sept 2017.Code of Matlab implementation of presented work. https://gitlab.com/ffuentes/hybrid_iris_segmentation/ . Accessed 06 Sept 2017.Face and eye detection with OpenCV. https://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html . Accessed 07 Sept 2018.A. K. Boyat, B. K. Joshi, 6. A review paper:noise models in digital image processing signal & image processing. An International Journal (SIPIJ), (2015), pp. 63–75. https://doi.org/10.5121/sipij.2015.6206 .A. Buades, Y. Lou, J. M. Morel, Z. Tang, Multi image noise estimation and denoising (2010). Available: https://hal.archives-ouvertes.fr/hal-00510866/

    The role of multiple marks in epigenetic silencing and the emergence of a stable bivalent chromatin state

    Get PDF
    We introduce and analyze a minimal model of epigenetic silencing in budding yeast, built upon known biomolecular interactions in the system. Doing so, we identify the epigenetic marks essential for the bistability of epigenetic states. The model explicitly incorporates two key chromatin marks, namely H4K16 acetylation and H3K79 methylation, and explores whether the presence of multiple marks lead to a qualitatively different systems behavior. We find that having both modifications is important for the robustness of epigenetic silencing. Besides the silenced and transcriptionally active fate of chromatin, our model leads to a novel state with bivalent (i.e., both active and silencing) marks under certain perturbations (knock-out mutations, inhibition or enhancement of enzymatic activity). The bivalent state appears under several perturbations and is shown to result in patchy silencing. We also show that the titration effect, owing to a limited supply of silencing proteins, can result in counter-intuitive responses. The design principles of the silencing system is systematically investigated and disparate experimental observations are assessed within a single theoretical framework. Specifically, we discuss the behavior of Sir protein recruitment, spreading and stability of silenced regions in commonly-studied mutants (e.g., sas2, dot1) illuminating the controversial role of Dot1 in the systems biology of yeast silencing.Comment: Supplementary Material, 14 page

    Unauthorized Horizontal Spread in the Laboratory Environment: The Tactics of Lula, a Temperate Lambdoid Bacteriophage of Escherichia coli

    Get PDF
    We investigated the characteristics of a lambdoid prophage, nicknamed Lula, contaminating E. coli strains from several sources, that allowed it to spread horizontally in the laboratory environment. We found that new Lula infections are inconspicuous; at the same time, Lula lysogens carry unusually high titers of the phage in their cultures, making them extremely infectious. In addition, Lula prophage interferes with P1 phage development and induces its own lytic development in response to P1 infection, turning P1 transduction into an efficient vehicle of Lula spread. Thus, using Lula prophage as a model, we reveal the following principles of survival and reproduction in the laboratory environment: 1) stealth (via laboratory material commensality), 2) stability (via resistance to specific protocols), 3) infectivity (via covert yet aggressive productivity and laboratory protocol hitchhiking). Lula, which turned out to be identical to bacteriophage phi80, also provides an insight into a surprising persistence of T1-like contamination in BAC libraries

    The Inheritance of Histone Modifications Depends upon the Location in the Chromosome in Saccharomyces cerevisiae

    Get PDF
    Histone modifications are important epigenetic features of chromatin that must be replicated faithfully. However, the molecular mechanisms required to duplicate and maintain histone modification patterns in chromatin remain to be determined. Here, we show that the introduction of histone modifications into newly deposited nucleosomes depends upon their location in the chromosome. In Saccharomyces cerevisiae, newly deposited nucleosomes consisting of newly synthesized histone H3-H4 tetramers are distributed throughout the entire chromosome. Methylation of lysine 4 on histone H3 (H3-K4), a hallmark of euchromatin, is introduced into these newly deposited nucleosomes, regardless of whether the neighboring preexisting nucleosomes harbor the K4 mutation in histone H3. Furthermore, if the heterochromatin-binding protein Sir3 is unavailable during DNA replication, histone H3-K4 methylation is introduced onto newly deposited nucleosomes in telomeric heterochromatin. Thus, a conservative distribution model most accurately explains the inheritance of histone modifications because the location of histones within euchromatin or heterochromatin determines which histone modifications are introduced

    The λ Red Proteins Promote Efficient Recombination between Diverged Sequences: Implications for Bacteriophage Genome Mosaicism

    Get PDF
    Genome mosaicism in temperate bacterial viruses (bacteriophages) is so great that it obscures their phylogeny at the genome level. However, the precise molecular processes underlying this mosaicism are unknown. Illegitimate recombination has been proposed, but homeologous recombination could also be at play. To test this, we have measured the efficiency of homeologous recombination between diverged oxa gene pairs inserted into λ. High yields of recombinants between 22% diverged genes have been obtained when the virus Red Gam pathway was active, and 100 fold less when the host Escherichia coli RecABCD pathway was active. The recombination editing proteins, MutS and UvrD, showed only marginal effects on λ recombination. Thus, escape from host editing contributes to the high proficiency of virus recombination. Moreover, our bioinformatics study suggests that homeologous recombination between similar lambdoid viruses has created part of their mosaicism. We therefore propose that the remarkable propensity of the λ-encoded Red and Gam proteins to recombine diverged DNA is effectively contributing to mosaicism, and more generally, that a correlation may exist between virus genome mosaicism and the presence of Red/Gam-like systems
    corecore