19,605 research outputs found
Process-Oriented Collective Operations
Distributing process-oriented programs across a cluster of machines requires careful attention to the effects of network latency. The MPI standard, widely used for cluster computation, defines a number of collective operations: efficient, reusable algorithms for performing operations among a group of machines in the cluster. In this paper, we describe our techniques for implementing MPI communication patterns in process-oriented languages, and how we have used them to implement collective operations in PyCSP and occam-pi on top of an asynchronous messaging framework. We show how to make use of collective operations in distributed processoriented applications. We also show how the process-oriented model can be used to increase concurrency in existing collective operation algorithms
How to mesh up Ewald sums (I): A theoretical and numerical comparison of various particle mesh routines
Standard Ewald sums, which calculate e.g. the electrostatic energy or the
force in periodically closed systems of charged particles, can be efficiently
speeded up by the use of the Fast Fourier Transformation (FFT). In this article
we investigate three algorithms for the FFT-accelerated Ewald sum, which
attracted a widespread attention, namely, the so-called
particle-particle-particle-mesh (P3M), particle mesh Ewald (PME) and smooth PME
method. We present a unified view of the underlying techniques and the various
ingredients which comprise those routines. Additionally, we offer detailed
accuracy measurements, which shed some light on the influence of several tuning
parameters and also show that the existing methods -- although similar in
spirit -- exhibit remarkable differences in accuracy. We propose combinations
of the individual components, mostly relying on the P3M approach, which we
regard as most flexible.Comment: 18 pages, 8 figures included, revtex styl
The Content-Dependence of Imaginative Resistance
An observation of Hume’s has received a lot of attention over the last decade and a half: Although we can standardly imagine the most implausible scenarios, we encounter resistance when imagining propositions at odds with established moral (or perhaps more generally evaluative) convictions. The literature is ripe with ‘solutions’ to this so-called ‘Puzzle of Imaginative Resistance’. Few, however, question the plausibility of the empirical assumption at the heart of the puzzle. In this paper, we explore empirically whether the difficulty we witness in imagining certain propositions is indeed due to claim type (evaluative v. non-evaluative) or whether it is much rather driven by mundane features of content. Our findings suggest that claim type plays but a marginal role, and that there might hence not be much of a ‘puzzle’ to be solved
Monitoring and Assessing the Use of External Quality Review Organizations to Improve Services for Young Children: A Toolkit for State Medicaid Agencies
Assesses the extent to which states use external quality review organizations in studying the quality of preventive and developmental services for young children enrolled in Medicaid, and provides guidance on determining their scope of work
Eigenvalue Decomposition as a Generalized Synchronization Cluster Analysis
Motivated by the recent demonstration of its use as a tool for the detection
and characterization of phase-shape correlations in multivariate time series,
we show that eigenvalue decomposition can also be applied to a matrix of
indices of bivariate phase synchronization strength. The resulting method is
able to identify clusters of synchronized oscillators, and to quantify their
strength as well as the degree of involvement of an oscillator in a cluster.
Since for the case of a single cluster the method gives similar results as our
previous approach, it can be seen as a generalized Synchronization Cluster
Analysis, extending its field of application to more complex situations. The
performance of the method is tested by applying it to simulation data.Comment: Submitted Oct 2005, accepted Jan 2006, "published" Oct 2007, actually
available Jan 200
Minimal Cosmogenic Neutrinos
The observed flux of ultra-high energy (UHE) cosmic rays (CRs) guarantees the
presence of high-energy cosmogenic neutrinos that are produced via
photo-hadronic interactions of CRs propagating through intergalactic space.
This flux of neutrinos doesn't share the many uncertainties associated with the
environment of the yet unknown CR sources. Cosmogenic neutrinos have
nevertheless a strong model dependence associated with the chemical
composition, source distribution or evolution and maximal injection energy of
UHE CRs. We discuss a lower limit on the cosmogenic neutrino spectrum which
depends on the observed UHE CR spectrum and composition and relates directly to
experimentally observable and model-independent quantities. We show explicit
limits for conservative assumptions about the source evolution.Comment: 6 pages, 3 figure
- …