1,977 research outputs found

    Making Nuclei Out Of The Skyrme Crystal

    Get PDF
    A new method for approximating Skyrme solutions is developed. It consists of cutting sections out of the Skyrme crystal and smoothly interpolating between the boundary and spatial infinity. Several field configurations are constructed, and their energies calculated. The surface energy (per unit area) of an infinite flat plane of the crystal is also calculated, and the result used to derive a formula analogous to the semi-empirical mass formula of nuclear physics. This formula can be used to give some idea of what the Skyrme model predicts about volume and surface energies of the nucleus over a broad range of baryon numbers.Comment: 20 pages, uuencoded ps file `crystal.uu'. The LaTeX version can be obtained by emailing [email protected] or [email protected]

    Get Complicated

    Get PDF
    Conflicts over important moral differences can divide communities and trap people in destructive spirals of enmity that become intractable. But these conflicts can also be managed constructively. Two laboratory studies investigating the underlying social–psychological dynamics of more tractable versus intractable moral conflicts are presented, which tested a core proposition derived from a dynamical systems theory of intractable conflict. It portrays more intractable conflicts as those, which have lost the complexity inherent to more constructive social relations and have collapsed into overly simplified, closed patterns of thinking, feeling, and acting that resist change. Employing our Difficult Conversations Lab paradigm in which participants engage in genuine discussions over moral differences, we found that higher levels of cognitive, emotional, and behavioral complexity were associated with more tractable conversations. Whereas in a pilot study we examined conflicts that naturally became more/less intractable, in our main experiment, high versus low levels of cognitive complexity were induced

    Nanometer Scale Mapping of the Density of States in an Inhomogeneous Superconductor

    Full text link
    Using high speed scanning tunneling spectroscopy, we perform a full mapping of the quasiparticle density of states (DOS) in single crystals of BiPbSrCaCuO(2212). The measurements carried out at 5 K showed a complex spatial pattern of important variations of the local DOS on the nanometer scale. Superconducting areas are co-existing with regions of a smooth and larger gap-like DOS structure. The superconducting regions are found to have a minimum size of about 3 nm. The role of Pb-introduced substitutional disorder in the observed spatial variations of the local DOS is discussed.Comment: 4 page Letter with 3 figures (2 color figures

    Exclusive channels in semi-inclusive production of pions and kaons

    Full text link
    We investigate the role of exclusive channels in semi-inclusive electroproduction of pions and kaons. Using the QCD factorization theorem for hard exclusive processes we evaluate the cross sections for exclusive pseudoscalar and vector meson production in terms of generalized parton distributions and meson distribution amplitudes. We investigate the uncertainties arising from the modeling of the nonperturbative input quantities. Combining these results with available experimental data, we compare the cross sections for exclusive channels to that obtained from quark fragmentation in semi-inclusive deep inelastic scattering. We find that rho^0 production is the only exclusive channel with significant contributions to semi-inclusive pion production at large z and moderate Q^2. The corresponding contribution to kaon production from the decay of exclusively produced phi and K^* is rather small.Comment: 33 pages, 18 figure

    Increase and development of wheat production, phase I (1971-March 1980): draft interim report.

    Get PDF
    bitstream/item/126672/1/ID-5623.pd

    Spin dynamics in p-doped semiconductor nanostructures subject to a magnetic field tilted from the Voigt geometry

    Get PDF
    We develop a theoretical description of the spin dynamics of resident holes in a p-doped semiconductor quantum well (QW) subject to a magnetic field tilted from the Voigt geometry. We find the expressions for the signals measured in time-resolved Faraday rotation (TRFR) and resonant spin amplification (RSA) experiments and study their behavior for a range of system parameters. We find that an inversion of the RSA peaks can occur for long hole spin dephasing times and tilted magnetic fields. We verify the validity of our theoretical findings by performing a series of TRFR and RSA experiments on a p-modulation doped GaAs/Al_{0.3}Ga_{0.7}As single QW and showing that our model can reproduce experimentally observed signals.Comment: 9 pages, 3 figures; corrected typo

    Gate control of low-temperature spin dynamics in two-dimensional hole systems

    Full text link
    We have investigated spin and carrier dynamics of resident holes in high-mobility two-dimensional hole systems in GaAs/Al0.3_{0.3}Ga0.7_{0.7}As single quantum wells at temperatures down to 400 mK. Time-resolved Faraday and Kerr rotation, as well as time-resolved photoluminescence spectroscopy are utilized in our study. We observe long-lived hole spin dynamics that are strongly temperature dependent, indicating that in-plane localization is crucial for hole spin coherence. By applying a gate voltage, we are able to tune the observed hole g factor by more than 50 percent. Calculations of the hole g tensor as a function of the applied bias show excellent agreement with our experimental findings.Comment: 8 pages, 7 figure

    Geometrically Induced Gauge Structure on Manifolds Embedded in a Higher Dimensional Space

    Get PDF
    We explain in a context different from that of Maraner the formalism for describing motion of a particle, under the influence of a confining potential, in a neighbourhood of an n-dimensional curved manifold M^n embedded in a p-dimensional Euclidean space R^p with p >= n+2. The effective Hamiltonian on M^n has a (generally non-Abelian) gauge structure determined by geometry of M^n. Such a gauge term is defined in terms of the vectors normal to M^n, and its connection is called the N-connection. In order to see the global effect of this type of connections, the case of M^1 embedded in R^3 is examined, where the relation of an integral of the gauge potential of the N-connection (i.e., the torsion) along a path in M^1 to the Berry's phase is given through Gauss mapping of the vector tangent to M^1. Through the same mapping in the case of M^1 embedded in R^p, where the normal and the tangent quantities are exchanged, the relation of the N-connection to the induced gauge potential on the (p-1)-dimensional sphere S^{p-1} (p >= 3) found by Ohnuki and Kitakado is concretely established. Further, this latter which has the monopole-like structure is also proved to be gauge-equivalent to the spin-connection of S^{p-1}. Finally, by extending formally the fundamental equations for M^n to infinite dimensional case, the present formalism is applied to the field theory that admits a soliton solution. The resultant expression is in some respects different from that of Gervais and Jevicki.Comment: 52 pages, PHYZZX. To be published in Int. J. Mod. Phys.

    Behavioral and Emotional Dynamics of Two People Struggling to Reach Consensus about a Topic on Which They Disagree

    Get PDF
    We studied the behavioral and emotional dynamics displayed by two people trying to resolve a conflict. 59 groups of two people were asked to talk for 20 minutes to try to reach a consensus about a topic on which they disagreed. The topics were abortion, affirmative action, death penalty, and euthanasia. Behavior data were determined from audio recordings where each second of the conversation was assessed as proself, neutral, or prosocial. We determined the probability density function of the durations of time spent in each behavioral state. These durations were well fit by a stretched exponential distribution, with an exponent, , of approximately 0.3. This indicates that the switching between behavioral states is not a random Markov process, but one where the probability to switch behavioral states decreases with the time already spent in that behavioral state. The degree of this “memory” was stronger in those groups who did not reach a consensus and where the conflict grew more destructive than in those that did. Emotion data were measured by having each person listen to the audio recording and moving a computer mouse to recall their negative or positive emotional valence at each moment in the conversation. We used the Hurst rescaled range analysis and power spectrum to determine the correlations in the fluctuations of the emotional valence. The emotional valence was well described by a random walk whose increments were uncorrelated. Thus, the behavior data demonstrated a “memory” of the duration already spent in a behavioral state while the emotion data fluctuated as a random walk whose steps did not have a “memory” of previous steps. This work demonstrates that statistical analysis, more commonly used to analyze physical phenomena, can also shed interesting light on the dynamics of processes in social psychology and conflict management
    • …
    corecore