16 research outputs found

    Application of real-time engine simulations to the development of propulsion system controls

    Get PDF
    The development of digital controls for turbojet and turbofan engines is presented by the use of real-time computer simulations of the engines. The engine simulation provides a test-bed for evaluating new control laws and for checking and debugging control software and hardware prior to engine testing. The development and use of real-time, hybrid computer simulations of the Pratt and Whitney TF30-P-3 and F100-PW-100 augmented turbofans are described in support of a number of controls research programs at the Lewis Research Center. The role of engine simulations in solving the propulsion systems integration problem is also discussed

    Advancements in real-time engine simulation technology

    Get PDF
    The approaches used to develop real-time engine simulations are reviewed. Both digital and hybrid (analog and digital) techniques are discussed and specific examples of each are cited. These approaches are assessed from the standpoint of their usefulness for digital engine control development. A number of NASA-sponsored simulation research activities, aimed at exploring real-time simulation techniques, are described. These include the development of a microcomputer-based, parallel processor system for real-time engine simulation

    Application of a double-dead-time model describing chugging to liquid propellant rocket engines having multielement injectors

    Get PDF
    Double-dead-time model describing chugging to liquid propellant rocket engines having multielement injector

    Real-time simulation of the TF30-P-3 turbofan engine using a hybrid computer

    Get PDF
    A real-time, hybrid-computer simulation of the TF30-P-3 turbofan engine was developed. The simulation was primarily analog in nature but used the digital portion of the hybrid computer to perform bivariate function generation associated with the performance of the engine's rotating components. FORTRAN listings and analog patching diagrams are provided. The hybrid simulation was controlled by a digital computer programmed to simulate the engine's standard hydromechanical control. Both steady-state and dynamic data obtained from the digitally controlled engine simulation are presented. Hybrid simulation data are compared with data obtained from a digital simulation provided by the engine manufacturer. The comparisons indicate that the real-time hybrid simulation adequately matches the baseline digital simulation

    An automated procedure for developing hybrid computer simulations of turbofan engines

    Get PDF
    A systematic, computer-aided, self-documenting methodology for developing hybrid computer simulations of turbofan engines is presented. The methodology makes use of a host program that can run on a large digital computer and a machine-dependent target (hybrid) program. The host program performs all of the calculations and date manipulations needed to transform user-supplied engine design information to a form suitable for the hybrid computer. The host program also trims the self contained engine model to match specified design point information. A test case is described and comparisons between hybrid simulation and specified engine performance data are presented

    Evaluation of an F100 multivariable control using a real-time engine simulation

    Get PDF
    A multivariable control design for the F100 turbofan engine was evaluated, as part of the F100 multivariable control synthesis (MVCS) program. The evaluation utilized a real-time, hybrid computer simulation of the engine and a digital computer implementation of the control. Significant results of the evaluation are presented and recommendations concerning future engine testing of the control are made

    A lumped parameter mathematical model for simulation of subsonic wind tunnels

    Get PDF
    Equations for a lumped parameter mathematical model of a subsonic wind tunnel circuit are presented. The equation state variables are internal energy, density, and mass flow rate. The circuit model is structured to allow for integration and analysis of tunnel subsystem models which provide functions such as control of altitude pressure and temperature. Thus the model provides a useful tool for investigating the transient behavior of the tunnel and control requirements. The model was applied to the proposed NASA Lewis Altitude Wind Tunnel (AWT) circuit and included transfer function representations of the tunnel supply/exhaust air and refrigeration subsystems. Both steady state and frequency response data are presented for the circuit model indicating the type of results and accuracy that can be expected from the model. Transient data for closed loop control of the tunnel and its subsystems are also presented, demonstrating the model's use as a control analysis tool

    Development and application of dynamic simulations of a subsonic wind tunnel

    Get PDF
    Efforts are currently underway at NASA Lewis to improve and expand ground test facilities and to develop supporting technologies to meet anticipated aeropropulsion research needs. Many of these efforts have been focused on a proposed rehabilitation of the Altitude Wind Tunnel (AWT). In order to insure a technically sound design, an AWT modeling program (both analytical and physical) was initiated to provide input to the AWT final design process. This paper describes the approach taken to develop analytical, dynamic computer simulations of the AWT, and the use of these simulations as test-beds for: (1) predicting the dynamic response characteristics of the AWT, and (2) evaluating proposed AWT control concepts. Plans for developing a portable, real-time simulator for the AWT facility are also described
    corecore