NASA TECHNICAL MEMORANDUM

NASA TM X-3106

REAL-TIME SIMULATION OF THE TF30-P-3 TURBOFAN ENGINE USING A HYBRID COMPUTER

by John R. Szuch and William M. Bruton

Lewis Research Center

Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . OCTOBER 1974

1. Report No. NASA TM X-3106	2	. Government Accession	n No.	I. Recipient's Catalog N	lo.						
4. Title and Subtitle			1 '	6. Report Date	7).						
REAL-TIME SIMULAT			JRBOFAN	OCTOBER 19							
ENGINE USING A HYP	RID COMP	UTER		5. Performing Organizat							
7. Author(s)			8	on Report No.							
John R. Szuch and Wil	John R. Szuch and William M. Bruton			E-7904							
			10	10. Work Unit No.							
9. Performing Organization Name ar				501-24							
Lewis Research Cente			1	11. Contract or Grant No.							
National Aeronautics		Administration									
Cleveland, Ohio 4413			1:	3. Type of Report and							
12. Sponsoring Agency Name and A	ddress			Technical Mer	norandum						
National Aeronautics	and Space A	Administration	1.	4. Sponsoring Agency	Code						
Washington, D.C. 20	546										
15. Supplementary Notes											
to perform bivariate components. FORTR hybrid simulation was standard hydromecha digitally controlled edata obtained from a indicate that the real	AN listings s controlled nical contr ngine simul	s and analog pate d by a digital cor ol. Both steady lation are preser ulation provided	thing diagrams are inputer programmed state and dynamic ited. Hybrid simula by the engine manu	provided in the same and the same at the data obtained from the control of the confection of the confe	engine's om the ompared with comparisons						
			18. Distribution Statement								
17. Key Words (Suggested by Aut	hor(s)) Real-tim		Unclassified - unlimited								
Simulation	Transien		Category 28								
Hybrid computer			Category 20								
Turbofan	Dynamic	S									
		20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*						
19. Security Classif. (of this report Unclassified		i e	lassified	103	\$4.50						
unciassined		, Jiic.		I	1						

1		

CONTENTS

																						Pa	ıge
SUMMARY																							1
INTRODUCTION																•							1
ENGINE DESCRIPTION					•				•														3
ENGINE MODEL			•					•											•				4
Inlet																							4
Fan																							5
Low-Pressure Compressor																						٠	6
High-Pressure Compressor																	•						7
High- and Low-Pressure Turbines												-										٠	9
Combustor, Augmentor, and Duct																				•			10
Exhaust Nozzle																							12
Engine Dynamics			•		•	٠								•	•			•		٠	•		13
HYBRID SIMULATION										•													18
Digital Program																							
MAIN digital program																							
MAP2 function routine																							
Analog Program																							
Digital-to-analog multiplier inter	rfa	сe																					20
Analog function generation																							
RESULTS AND DISCUSSION																							20
Steady State																							
Transients								•						•		•	•	•				•	22
Frequency Responses				•								•	•	•	•		-		•		•	•	24
CONCLUDING REMARKS	•	•				•			•					•					•	•		•	25
APPENDIXES																							
A - SYMBOLS																							
B - MAIN DIGITAL PROGRAM - D	ES	CI	RII	РΤ	IO	N	Αì	ND	F	OI	RТ	'RA	١N	L	IS	TI	NC	Ì	•		•	•	35
C - DIGITAL INPUT DATA							٠																41
D - MAP2 FUNCTION GENERATIO	N	R	ΟU	ΤI	NI	Ξ.	- r	E	SC	RI	P	ΓIC	ΟN	Α	NI)	FO	R	Γ R	A]	N		
AND ASSEMBLY LANGUAGE I	LIS	TI	N	GS															•				431
E - ANALOG PROGRAM - PATCH: AND SCALE FACTORS																							51
	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	٠	•	٠	•	•	•	
DEFEDENCES																							52

I			

REAL-TIME SIMULATION OF THE TF30-P-3 TURBOFAN ENGINE USING A HYBRID COMPUTER

by John R. Szuch and William M. Bruton Lewis Research Center

SUMMARY

This report describes the development of a real-time hybrid-computer simulation of the Pratt & Whitney TF30-P-3 augmented turbofan engine. The simulation is intended to support research programs involving this engine.

The simulation is primarily analog in nature but does use the digital portion of the hybrid computer to perform bivariate function generation associated with modeling the performance of the engine's rotating components. The digital portion of the engine simulation requires about 10 000 words of core storage. The digital sampling interval is about 4.6 milliseconds and does allow real-time simulation of engine dynamics. Approximately 185 amplifiers and 85 multipliers are required to perform the analog calculations. FORTRAN listings and analog patching diagrams are provided in appendixes to this report.

The hybrid simulation was controlled by a general-purpose digital computer programmed to simulate the standard TF30-P-3 hydromechanical fuel and variable geometry controls. Both steady-state and dynamic data obtained from the digitally controlled engine simulation are presented. Hybrid simulation data are compared with data obtained from a digital simulation provided by the engine manufacturer. These comparisons indicate that the real-time hybrid simulation does adequately match the baseline digital simulation. The real-time simulation should, therefore, provide a valuable analytical tool for research studies involving the TF30-P-3 turbofan engine.

INTRODUCTION

Aircraft propulsion systems have become steadily more complex. With engines and inlets operating at higher levels of performance, propulsion system controls have also necessarily increased in complexity. In order to obtain maximum performance for all

flight conditions, digital control systems (ref. 1) are being considered for inlets and engines. The use of a digital computer, with its logic and memory capabilities, would provide maximum flexibility and versatility to propulsion control systems.

The development of controls for aircraft propulsion systems is facilitated by an ability to predict engine performance accurately over a wide range of operation. Computer programs for analyzing steady-state and dynamic performance of turbojet and turbofan engines have previously been developed (refs. 2 to 8). Some of these engine simulations have been expanded to include the simulation of engine controls.

In the development of digital controls for turbojet and turbofan engines, both computer simulations and experimental testing will be required to evaluate new control laws. The experimental tests can be more efficiently planned and executed if the digital control software can be tested and ''debugged'' by using the engine simulation. This imposes another requirement on the engine simulation. That is, the simulation must operate in ''real time.'' The real-time requirement exists because timing and sequencing are extremely important in the development of digital control software. Also, the effects of digital sampling intervals on engine performance (ref. 9) can be predicted by using a real-time simulation.

Turbojet and turbofan engines can be simulated by using either analog (ref. 6), digital (refs. 2 to 5), or hybrid (refs. 7 and 8) computers. The real-time simulation requirement, however, limits the possible choices to the analog and hybrid computers. A purely analog simulation of a turbofan engine requires a large amount of computing equipment. Much of this equipment is needed to perform the bivariate function generation associated with modeling the engine's fan, compressor (or compressors), and turbine (or turbines). Unfortunately, analog function generation is often plagued by a lack of precision and repeatability. The precision and memory capabilities of the hybrid's own digital computer can be used to perform the required function generation, thus reducing the required amount of analog computing equipment.

This report describes the development of a real-time hybrid-computer simulation of the Pratt & Whitney TF30-P-3 augmented turbofan engine. The simulation is intended to support research programs involving this engine. The hybrid simulation was patterned after the engine manufacturer's digital simulation of the TF30-P-3 engine and was implemented on the Lewis Research Center's Electronic Associates, Inc., (EAI) Model 690 Hybrid Computing System and two EAI Model 231-R Analog Computers.

The TF30-P-3 hybrid-computer simulation was controlled by a general-purpose digital control computer (ref. 10) programmed to simulate the standard TF30-P-3 hydromechanical fuel and variable geometry controls. This digital control system was developed for on-line control of airbreathing engines during experimental testing.

Both steady-state and dynamic data obtained from the digitally controlled simulation are presented for a full range of power settings. Data were obtained at both sea level and simulated altitude conditions. Hybrid simulation data are compared with data ob-

tained from the engine manufacturer's digital simulation. FORTRAN listing and analog patching diagrams are provided. This information should prove useful in the development of similar engine simulations.

ENGINE DESCRIPTION

The Pratt & Whitney TF30-P-3 engine (fig. 1) is an axial, mixed-flow, augmented, twin-spool, low-bypass-ratio turbofan. A single inlet is used for both the fan airflow and the engine core airflow. Airflow leaving the fan is separated into two flow streams: one stream passing through the engine core, and the other stream passing through the annular fan duct. A nine-stage low-pressure compressor includes the core portion of the three-stage fan and is connected by a through-shaft to the three-stage low-pressure turbine. A seven-stage high-pressure compressor is connected by a hollow shaft to the single-stage high-pressure turbine. A seventh-stage compressor bleed system discharges air into the fan duct at flight Mach numbers above 1.75. A 12th-stage bleed automatically discharges air into the fan duct for compressor surge control. Cooling of high-pressure and low-pressure turbine blades is accomplished by using 16th-stage compressor bleed air.

The TF30-P-3 combustor is located between the discharge of the high-pressure compressor and the inlet of the high-pressure turbine. The combustor section consists of an annular diffuser and eight combustion chambers. Each combustion chamber contains four dual-orifice fuel spray nozzles. The main fuel control meters fuel to the combustor as a function of the power lever angle PLA, the high-pressure-compressor speed N_H , the fan inlet total pressure P_2 and temperature T_2 , and the high-pressure-compressor discharge static pressure $P_{s,\,3}$. (All symbols are defined in appendix A.) In the combustor, airflow from the compressors reacts with the injected fuel, producing high-energy gas to run the turbines.

The engine core and fan duct flow streams combine in an augmentor and are discharged through a variable-area convergent nozzle. The augmentor consists of a diffuser section and a combustion chamber. The fuel is introduced into the combustion chamber through spray rings which are arranged into five separate zones. The augmentor fuel control meters fuel to the five zones as a function of PLA, N_H , T_2 , P_s , 3, the nozzle area A_N , and the turbine discharge total pressure P_6 . The hydraulically actuated nozzle is adjusted to maintain a scheduled ratio of P_s , $3/P_6$ during augmentor operation.

ENGINE MODEL

The first step in developing an engine simulation is the formulation of an analytical model. This model, in equation form, represents the functional relations that exist between engine variables such as pressures, temperatures, and flows. In the case of the TF30-P-3 hybrid-computer simulation, the engine model should be capable of accurately predicting both steady-state and dynamic performance of the engine. Wide-range performance maps for the engine's rotating components should be included in the simulation for steady-state accuracy. Factors such as fluid momentum, mass and energy storage, and rotor inertias should be included to provide the desired transient capability.

Wherever possible, the TF30-P-3 model was patterned after the engine manufacturer's baseline digital simulation of the TF30-P-3 engine. The following sections describe the various elements which comprise the TF30-P-3 hybrid-computer simulation. Figure 2 illustrates the flow of calculations in the hybrid simulation and should help the reader in understanding the relations of the individual elements in the engine model.

Inlet

The real-time, hybrid-computer simulation of the TF30-P-3 engine does not include a dynamic simulation of an inlet. However, a steady-state representation of a typical inlet recovery is included in the simulation. The following equations are used in the hybrid simulation to calculate the total pressure P_2 and total temperature T_2 at the fan inlet from the values of P_0 , T_0 , and M_0 for a specified flight condition:

$$(T/T)_{I} = 1 + 0.2 M_{0}^{2}$$
 (1)

$$(P/P)_{I} = (T/T)_{I}^{3.5}$$
 (2)

$$\eta_{\rm I} = \begin{cases} 1.0 & \text{if } \mathbf{M}_0 \leq 1.0 \\ \\ 1.0 - 0.075(\mathbf{M}_0 - 1)^{1.35} & \text{if } \mathbf{M}_0 > 1.0 \end{cases}$$
 (3)

$$T_2 = (T/T)_I T_0 \tag{4}$$

$$P_2 = (P/P)_I P_0 \eta_I \tag{5}$$

There are basically two methods that can be used to model multistage fans and compressors. One method is to represent multistage fans and compressors with individual stage models (i. e., to compute pressure and temperature rises across each stage). This technique is referred to as stage stacking (ref. 6), but it requires a large computing facility when used in a total engine simulation. The method used in the real-time, hybrid-computer simulation involves the use of overall component performance maps. Interstage gas dynamics were not considered.

The TF30-P-3 three-stage fan was modeled with separate performance maps for the fan hub (core) and tip (duct) sections. Separate maps were required because of the radial pressure gradient which exists at the fan discharge at high rotor speeds.

Overall fan performance for the hub and tip sections is described by a pair of bivariate functions. In the baseline digital simulation, the fan tip pressure ratio and fan corrected speed were selected as independent variables and used to compute the total fan corrected airflow and the fan tip adiabatic efficiency. The same pair of independent variables were used to compute the fan hub pressure ratio and fan hub adiabatic efficiency.

To obtain the fan discharge temperature from efficiency requires additional calculations (including exponentiation). Because of the real-time requirement and equipment limitations, it was necessary to minimize the function generation and algebraic computations associated with modeling the fan (and compressors). Data obtained from the baseline simulation indicated that the fan hub and tip efficiency maps could be eliminated and the corresponding temperature ratios calculated as linear functions of the pressure ratios. In the TF30-P-3 hybrid-computer simulation, the fan model is described by the following equations:

$$(\dot{\mathbf{w}}_{c})_{\text{FAN}} = \mathbf{f}_{1} \left[\left(\frac{\mathbf{P}_{1.3}}{\mathbf{P}_{2}} \right), \left(\frac{\mathbf{N}_{L}}{\sqrt{\theta_{2}}} \right) \right]$$
 (6)

$$\dot{\mathbf{w}}_{2} = \frac{\left(\dot{\mathbf{w}}_{c}\right)_{FAN}^{\delta_{2}}}{\sqrt{\theta_{2}}} \tag{7}$$

$$(P/P)_{FID} = f_2 \left[\left(\frac{P_{1.3}}{P_2} \right), \left(\frac{N_L}{\sqrt{\theta_2}} \right) \right]$$
 (8)

$$P_{2.1} = P_2(P/P)_{FID}$$
 (9)

$$(T/T)_{FOD} = 0.7210 + 0.2796 \left(\frac{P_{1.3}}{P_{2}}\right)$$
 (10)

$$(\dot{\mathbf{w}}\mathbf{T})_{1.3}^{} = \frac{c_{p, 1.3}^{}}{c_{p, 1.3}} (\dot{\mathbf{w}}_{2} - \dot{\mathbf{w}}_{2.1})^{}\mathbf{T}_{2}(\mathbf{T}/\mathbf{T})_{FOD} + \frac{c_{p, 2.2}^{}}{c_{p, 1.3}} \dot{\mathbf{w}}_{BL7}^{}\mathbf{T}_{2.2} + \frac{c_{p, 3}^{}}{c_{p, 1.3}} \dot{\mathbf{w}}_{BL12}^{}\mathbf{T}_{3}$$

$$(11)$$

$$(T/T)_{FID} = 0.7588 + 0.2412(P/P)_{FID}$$
 (12)

$$T_{2.1} = T_2(T/T)_{FID}$$
 (13)

Figure 3 contains plots of the bivariate functions representing the performance of the fan (eqs. (6) and (8)). The pressure ratios, corrected speed, and corrected airflow have been normalized by their design values. Equation (11) indicates that the 7th- and 12th-stage bleeds are assumed to enter the fan duct immediately behind the fan. The primed station designation (e.g., 1.3') refers to the entrance to the mixing volume.

Low-Pressure Compressor

Overall performance data are used to describe the TF30-P-3 low-pressure compressor (4th to 9th stages). The compressor corrected airflow and corrected speed were selected as the independent variables and were used to compute the compressor pressure ratio. As in the case of the fan, compressor temperature ratio was calculated from a linear function of pressure ratio, thus eliminating the need for generating the bivariate efficiency function. In order to better match the temperature ratio - pressure ratio relation over the range of operation, two linear functions were used for different ranges of pressure ratio.

The modeling of the low-pressure compressor was complicated by the effect of the 7th-stage bleed on the overall compressor performance. Based on information obtained from the digital simulation, the effect of the bleed on performance was represented by a shift in the compressor corrected speed used in the pressure ratio determination. The effect of bleed on efficiency (and hence, temperature ratio) was neglected in both the baseline digital and real-time hybrid simulations.

In order to compute the low-pressure-compressor corrected airflow with the 7th-stage bleed open, the following procedure was used: First, the corrected speed shift for a fully open bleed was determined from a function of the actual corrected speed. Linear interpolation was then used to determine the speed shift for a partially open

bleed. Finally, the pressure ratio was calculated from a bivariate function of the corrected airflow and shifted corrected speed.

The 7th-stage bleed flow was assumed to be proportional to the low-pressure-compressor inlet airflow and was assumed to leave the core stream at the compressor exit (station 2.2).

The TF30-P-3 low-pressure-compressor model is described by the following equations in the hybrid-computer simulation:

$$(P/P)_{LC} = f_3 \left[\frac{\dot{w}_{2.1} \sqrt{\theta_{2.1}}}{\delta_{2.1}} \right], (N_c)_{LC, M} \right]$$
 (14)

$$P_{2,2'} = P_{2,1}(P/P)_{LC}$$
 (15)

$$(N_c)_{LC, M} = \frac{N_L}{\sqrt{\theta_{2.1}}} + XBL7 f_9 \left[\frac{N_L}{\sqrt{\theta_{2.1}}}\right]$$
 (16)

$$T_{2} = T_{2} (T/T)_{LC}$$
 (18)

$$\dot{w}_{BL7} = 0.06 \text{ XBL7 } \dot{w}_{2.1}$$
 (19)

Figure 4(a) contains a plot of the bivariate function representing the low-pressure-compressor performance (eq. (14)) with the 7th-stage bleed closed. Figure 4(b) contains a plot of the corrected speed shift for the 7th-stage bleed fully open. The low-pressure-compressor map variables have been normalized by their design-point values.

High-Pressure Compressor

The mathematical treatment of the high-pressure compressor (10th to 16th stages) was quite similar to that of the low-pressure compressor. The basic difference was in the treatment of the 12th-stage bleed and its effect on the overall compressor performance. Based on information obtained from the digital simulation, the effect of the bleed

was represented by a shift in the compressor corrected flow used in the pressure ratio determination. The 12th-stage bleed flow was assumed to leave the core stream at the compressor exit (station 3). The cooling bleeds for the high- and low-pressure turbines are also extracted at the high-pressure-compressor exit. These bleed flows were assumed to be proportional to the high-pressure-compressor inlet airflow.

The high-pressure-compressor temperature ratio was calculated from a linear function of pressure ratio. Data from the digital simulation indicated that the slope and intercept of the function were sensitive to the bleed. Therefore, the slope and intercept were assumed to be linear functions of the percent of fully open bleed. The TF30-P-3 high-pressure-compressor model is described by the following equations in the hybrid simulation:

$$(P/P)_{HC} = f_4 \left[\left(\dot{w}_c \right)_{HC, M}, \frac{N_H}{\sqrt{\theta_{2.2}}} \right]$$
(20)

$$P_{3'} = P_{2.2}(P/P)_{HC}$$
 (21)

$$(\dot{w}_c)_{HC, M} = \frac{\dot{w}_{2.2} \sqrt{\theta_{2.2}}}{\delta_{2.2}} - XBL12 f_{10} \left[\frac{N_H}{\sqrt{\theta_{2.2}}} \right]$$
 (22)

$$(T/T)_{HC} = (1.0322 - 0.185 \text{ XBL}12) + (0.12588 + 0.08032 \text{ XBL}12)(P/P)_{HC}$$
 (23)

$$T_{3}$$
, = $T_{2.2}(T/T)_{HC}$ (24)

$$\dot{w}_{\rm BL12} = 0.055 \text{ XBL12 } \dot{w}_{2.2}$$
 (25)

$$\dot{w}_{BLHT} = 0.04744 \ \dot{w}_{2.2}$$
 (26)

$$\dot{w}_{BLLT} = 0.01985 \, \dot{w}_{2.2}$$
 (27)

Figure 5(a) contains a plot of the normalized bivariate function representing the high-pressure-compressor performance (eq. (20)). This plot represents the closed-bleed performance of the high-pressure compressor (XBL12 = 0). Figure 5(b) contains a plot of the normalized corrected flow shift for the 12th-stage bleed fully open.

High- and Low-Pressure Turbines

In the baseline digital simulation, overall turbine performance is represented by a set of bivariate functions. For each turbine, pressure ratio and a speed parameter N/\sqrt{T} were used as independent variables to determine the turbine flow parameter $\dot{w}\sqrt{T/P}$ and enthalpy drop parameter $\Delta h/T$. Based on previous simulation experience, the digital program map outputs were normalized by the speed parameter for use in the hybrid simulation models. The TF30-P-3 turbine models are described by the following equations in the hybrid simulation:

$$(fp)_{HT} = f_5 \left[\left(\frac{P_{4.1}}{P_4} \right), \left(\frac{N_H}{\sqrt{T_4}} \right) \right]$$
 (28)

$$\dot{\mathbf{w}}_{4} = \frac{(\mathbf{fp})_{\mathbf{H}\mathbf{T}}\mathbf{P}_{4}\mathbf{N}_{\mathbf{H}}}{\mathbf{T}_{4}} \tag{29}$$

$$(hp)_{HT} = f_7 \left[\left(\frac{P_{4.1}}{P_4} \right), \left(\frac{N_H}{\sqrt{T_4}} \right) \right]$$
(30)

$$(\Delta h)_{HT} = (hp)_{HT} \sqrt{T_4} N_4$$
 (31)

$$(\dot{\mathbf{w}}\mathbf{T})_{4.1} = \dot{\mathbf{w}}_{4} \left[\frac{c_{p,4}}{c_{p,4.1}} \mathbf{T}_{4} - \frac{(\Delta \mathbf{h})_{HT}}{c_{p,4.1}} \right] + \dot{\mathbf{w}}_{BLHT} \left[\frac{c_{p,3}}{c_{p,4.1}} \mathbf{T}_{3} - \frac{K_{BWHT}(\Delta \mathbf{h})_{HT}}{c_{p,4.1}} \right]$$
(32)

$$(fp)_{LT} = f_6 \left[\left(\frac{P_5}{P_{4.1}} \right), \left(\frac{N_L}{\sqrt{T_{4.1}}} \right) \right]$$
 (33)

$$\dot{\mathbf{w}}_{4.1} = \frac{(\mathbf{fp})_{\mathbf{LT}}^{\mathbf{P}_{4.1}}^{\mathbf{N}_{\mathbf{L}}}}{\mathbf{T}_{4.1}} \tag{34}$$

$$(hp)_{LT} = f_8 \left[\left(\frac{P_5}{P_{4.1}} \right), \left(\frac{N_L}{\sqrt{T_{4.1}}} \right) \right]$$
 (35)

$$(\Delta h)_{LT} = (hp)_{LT} \sqrt{T_{4.1}} N_L$$
(36)

$$(\dot{w}T)_{5} = \dot{w}_{4.1} \left[\frac{c_{p,4.1}}{c_{p,5}} T_{4.1} - \frac{(\Delta h)_{LT}}{c_{p,5}} \right] + \dot{w}_{BLLT} \left[\frac{c_{p,3}}{c_{p,5}} T_{3} - \frac{K_{BWLT}(\Delta h)_{LT}}{c_{p,5}} \right]$$
(37)

Figures 6 and 7 contain plots of the normalized bivariate functions representing the high-pressure- and low-pressure-turbine performance (eqs. (28), (30), (34), and (35)). The constants $K_{\mbox{BWHT}}$ and $K_{\mbox{BWLT}}$ appearing in equations (32) and (37) denote the fractions of the cooling bleed flows that are assumed to do turbine work.

Combustor, Augmentor, and Duct

The performance of the combustor can be represented by a total pressure loss due to friction and a temperature rise resulting from the heat release from the burned fuel. The ratio of the total pressure loss to the combustor inlet pressure P_3 was assumed to be proportional to the square of the compressible flow parameter $\dot{\mathbf{w}}\sqrt{T}/P$ at the combustor inlet. The following equation is used in the hybrid simulation to calculate the resulting combustor exit pressure:

$$P_4$$
, = $P_3 - \frac{K_B \dot{w}_3^2 T_3}{P_3} = P_3 - \frac{K_B \dot{w}_3^2 V_3}{R_A W_3}$ (38)

The use of the stored mass W_3 in equation (38) results in a savings in computing equipment.

The digital program makes use of a number of bivariate functions to describe the combustor efficiency and temperature rise. Data from that simulation indicated that a simple energy balance assuming constant combustion efficiency could adequately describe the steady-state temperature rise in the combustor. The following equation is used in the hybrid simulation to describe that process:

$$(\dot{\mathbf{w}}\mathbf{T})_{4'} = \frac{c_{\mathbf{p},3}}{c_{\mathbf{p},4}} \dot{\mathbf{w}}_{3}\mathbf{T}_{3} + \eta_{\mathbf{B}} \frac{\mathbf{H}\mathbf{V}\mathbf{F}}{c_{\mathbf{p},4}} \dot{\mathbf{w}}_{\mathbf{F}4}$$
 (39)

The specific heats $c_{p,\,3}$ and $c_{p,\,4}$, together with the efficiency η_B and fuel heating value HVF, were assumed to be constant.

The TF30-P-3 augmentor was represented by two sections having separate flow streams. In the baseline digital program, a static pressure balance between the streams was assumed at the entrance to the augmentor. However, only total pressures are used in the hybrid simulation. Data from the digital simulation indicated that the total pressure ratio $P_6/P_{1..6}$ was approximately constant along selected engine operating lines. Therefore, in the hybrid simulation, the total pressure P_5 and P_6 are calculated from

$$P_5 = P_6 = K_{PR6} P_{1.6}$$
 (40)

Each section of the augmentor was treated in the same way as the combustor. The fuel flow to the core augmentor section was supplied from two zones, and the duct augmentor section was fed from the remaining three zones. The following equations described the TF30-P-3 augmentor model:

$$P_7 = P_6 - K_{CAB}(\dot{w}_{4.1} + \dot{w}_{BLLT})^2 \frac{T_6}{P_6}$$
 (41)

$$(\dot{\mathbf{w}}\mathbf{T})_6 = (\dot{\mathbf{w}}\mathbf{T})_5 \tag{42}$$

$$(\dot{\mathbf{w}}\mathbf{T})_{7} = \frac{c_{p,6}}{c_{p,7}} (\dot{\mathbf{w}}\mathbf{T})_{6} + \frac{\eta_{CAB}}{c_{p,7}} \text{ HVF } \dot{\mathbf{w}}_{F7}$$
 (43)

$$T_7 = \frac{(\dot{w}T)_7}{\dot{w}_{4,1} + \dot{w}_{BLLT} + \dot{w}_{F7}}$$
(44)

$$P_{1.7'} = P_{1.6} - \frac{K_{DAB}\dot{w}_{1.6}^2 V_{1.6}}{R_A W_{1.6}}$$
(45)

$$(\dot{\mathbf{w}}\mathbf{T})_{1.7} = \frac{\mathbf{c}_{p, 1.6}}{\mathbf{c}_{p, 1.7}} \dot{\mathbf{w}}_{1.6}^{\mathsf{T}_{1.6}} + \frac{\eta_{\text{DAB}}}{\mathbf{c}_{p, 1.7}} \text{HVF } \dot{\mathbf{w}}_{\text{F1.7}}$$
(46)

As in the combustor, the specific heats and combustion efficiencies in the augmentor were assumed to be constant.

The total pressure drop in the bypass duct was modeled in the same manner as for the combustor sections. However, no temperature rise (or drop) was assumed in the duct. The following equations describe the hybrid simulation duct model:

$$P_{1.6}^{\prime} = P_{1.3} - \frac{K_D \dot{w}_{1.3}^2 V_{1.3}}{R_A W_{1.3}}$$
 (47)

$$T_{1,6}$$
, = $T_{1,3}$ (48)

Exhaust Nozzle

In order to match the analytical model used in the digital simulation, the TF30-P-3 exhaust nozzle was modeled as two separate nozzles fed by the separate core and duct augmentor sections. The sum of the physical areas of the two nozzles must equal the nozzle area set by the engine control.

The standard isentropic compressible flow equations were assumed to describe the flows through the two exhaust nozzles. Because of the assumption of an instantaneous pressure balance at the entrance to the augmentor (eq. (40)), it was possible to compute the low-pressure-turbine flow (eqs. (33) and (34)) without having to depend on volume dynamics downstream of the low-pressure turbine or resort to iterative procedures. The core augmentor equations (eqs. (41) and (44)) define the conditions at the entrance to the core exhaust nozzle and allow a direct calculation of the core nozzle area.

In the nonaugmented mode, the physical exhaust nozzle area is constant. In order to provide a degree of freedom in matching digital nonaugmented data, variable flow coefficients $C_{d,\,8}$ and $C_{d,\,1.\,8}$ were assumed for the core and duct nozzles, respectively. Each flow coefficient was calculated from a linear function of its corresponding nozzle pressure ratio. The slope and intercept of each flow coefficient were adjusted to best match the digital data.

During the augmented mode, the physical nozzle area was controlled so as to maintain engine variables near their military power values. Therefore, the separate nozzle pressure ratios (and hence, flow coefficients) were nearly constant over the range of augmentation. In order to provide a degree of freedom in matching digital data during augmentation, a total nozzle flow coefficient $C_{d,\,N}$ was calculated from a linear function of the physical nozzle area. The slope and intercept were adjusted to best match the digital data. The following equations describe the TF30-P-3 exhaust nozzle model:

$$(P/P)_{CN} = \frac{P_0}{P_7} \tag{49}$$

$$A_{8} = \frac{K_{CN}(\dot{w}_{4.1} + \dot{w}_{BLLT} + \dot{w}_{F7})\sqrt{T_{7}}}{P_{7} \text{ FN7 C}_{d.8}}$$
(50)

$$FN7 = \begin{cases} 0.2588 & \text{if } (P/P)_{CN} \le 0.53 \\ \left[P/P \right]_{CN}^{0.7143} \sqrt{1 - \left[P/P \right]_{CN}^{0.2857}} & \text{if } (P/P)_{CN} > 0.53 \end{cases}$$
 (51)

$$C_{d, 8} = 1.3625 - 0.7158(P/P)_{CN}$$
 where $0.825 \le C_{d, 8} \le 1.0$ (52)

$$A_{1.8} = C_{d,N} A_N - A_8$$
 where $C_{d,N} A_N \ge A_{N,MIN}$ (53)

$$C_{d, N} = 1.049 - 1.622 \times 10^{-4} A_{N}$$
 (54)

$$\dot{\mathbf{w}}_{1.7} = \frac{\mathbf{C}_{d, 1.8} \mathbf{A}_{1.8} \mathbf{P}_{1.7} \mathbf{FN17}}{\mathbf{K}_{DN} \sqrt{\mathbf{T}_{1.7}}}$$
(55)

$$(P/P)_{DN} = \frac{P_0}{P_{1,7}}$$
 (56)

FN17 =
$$\begin{cases} 0.2588 & \text{if } (P/P)_{DN} \leq 0.53 \\ \left[P/P \right]_{DN}^{0.7143} \sqrt{1 - \left[P/P \right]_{DN}^{0.2857}} & \text{if } (P/P)_{DN} > 0.53 \end{cases}$$
 (57)

$$C_{d, 1.8} = 1.575 - 1.00(P/P)_{DN}$$
 where $0.825 \le C_{d, 1.8} \le 1.0$ (58)

Engine Dynamics

The equations previously discussed describe the steady-state operation of the various engine components. However, a transient engine simulation must also consider the effects of fluid compressibility, fluid momentum, energy storage, and rotor inertias.

In the TF30-P-3 hybrid simulation, intercomponent volumes were assumed at engine locations where either (1) gas dynamics were considered to be important or (2) gas dynamics were required to eliminate the need for iterative solutions (fig. 3). Modified forms of the continuity, energy, and state equations (ref. 11) were written for each volume and solved for the stored mass, temperature, and pressure in the volume. When mixing of gases was not involved, a simple first-order lag form of the energy equation was used. The time constant for each lag was estimated to be equal to the ratio of the stored mass in the volume to the flow through the volume.

Because of the real-time requirement and the computing equipment limitations, gas properties such as specific heats were assumed to be constant over the range of engine operating temperatures and fuel-air ratios. Gas properties were adjusted at the engine design point (sea-level, static, standard-day, military power setting) to achieve the desired steady-state cycle balance. The following equations describe the intercomponent volume dynamics in the TF30-P-3 hybrid simulation:

$$W_{2.2} = \int_0^t (\dot{w}_{2.1} - \dot{w}_{BL7} - \dot{w}_{2.2}) dt + W_{2.2, i}$$
 (59)

$$T_{2.2} = \frac{1}{\tau_{2.2}} \int_0^t (T_{2.2}, -T_{2.2}) dt + T_{2.2, i}$$
 (60)

$$P_{2.2} = \frac{R_A W_{2.2} T_{2.2}}{V_{2.2}}$$
 (61)

$$W_{3} = \int_{0}^{t} (\dot{w}_{2,2} - \dot{w}_{BL12} - \dot{w}_{BLHT} - \dot{w}_{BLLT} - \dot{w}_{3,i}) dt + W_{3,i}$$
 (62)

$$T_3 = \frac{1}{\tau_3} \int_0^t (T_3, -T_3) dt + T_{3,i}$$
 (63)

$$P_3 = \frac{R_A W_3 T_3}{V_3} \tag{64}$$

$$W_4 = \int_0^t (\dot{w}_3 + \dot{w}_{F4} - \dot{w}_4) dt + W_{4, i}$$
 (65)

$$(WT)_4 = \gamma_4 \int_0^t [(\dot{w}T)_4, - \dot{w}_4 T_4] dt + (WT)_{4, i}$$
 (66)

$$T_4 = \frac{(WT)_4}{W_4} \tag{67}$$

$$P_4 = \frac{R_A(WT)_4}{V_4} \tag{68}$$

$$W_{4.1} = \int_0^t (\dot{w}_4 + \dot{w}_{BLHT} - \dot{w}_{4.1}) dt + W_{4.1, i}$$
 (69)

$$(WT)_{4.1} = \gamma_{4.1} \int_0^t [(\dot{w}T)_{4.1}, -\dot{w}_{4.1}T_{4.1}] dt + (WT)_{4.1,i}$$
 (70)

$$T_{4.1} = \frac{(WT)_{4.1}}{W_{4.1}} \tag{71}$$

$$P_{4.1} = \frac{R_A(WT)_{4.1}}{V_{4.1}} \tag{72}$$

$$W_{1.3} = \int_0^t (\dot{w}_2 - \dot{w}_{2.1} + \dot{w}_{BL7} + \dot{w}_{BL12} - \dot{w}_{1.3}) dt + W_{1.3,i}$$
 (73)

$$(WT)_{1,3} = \gamma_{1,3} \int_0^t [(\dot{w}T)_{1,3}, -\dot{w}_{1,3}T_{1,3}]dt + (WT)_{1,3,i}$$
 (74)

$$T_{1.3} = \frac{(WT)_{1.3}}{W_{1.3}} \tag{75}$$

$$P_{1.3} = \frac{R_A(WT)_{1.3}}{V_{1.3}} \tag{76}$$

$$W_{1.6} = \int_0^t (\dot{w}_{1.3} - \dot{w}_{1.6}) dt + W_{1.6,i}$$
 (77)

$$T_{1.6} = \frac{1}{\tau_{1.6}} \int_0^t (T_{1.3} - T_{1.6}) dt + T_{1.6, i}$$
 (78)

$$P_{1.6} = \frac{R_A W_{1.6} T_{1.6}}{V_{1.6}} \tag{79}$$

$$W_{1.7} = \int_0^t (\dot{w}_{1.6} + \dot{w}_{F1.7} - \dot{w}_{1.7}) dt + W_{1.7,i}$$
 (80)

$$(WT)_{1.7} = \gamma_{1.7} \int_0^t [(\dot{w}T)_{1.7}, -\dot{w}_{1.7}T_{1.7}]dt + (WT)_{1.7, i}$$
(81)

$$T_{1.7} = \frac{(WT)_{1.7}}{W_{1.7}} \tag{82}$$

$$P_{1.7} = \frac{R_A(WT)_{1.7}}{V_{1.7}}$$
 (83)

The effects of fluid momentum on the TF30-P-3 engine dynamics were also included in the hybrid simulation. While these effects are primarily high frequency in nature, their inclusion in the simulation also serves to eliminate algebraic or iterative loops. The momentum equation was solved for the flow through (1) the combined fan core and low-pressure compressor, (2) the high-pressure compressor, (3) the combustor, (4) the fan duct, and (5) the duct augmentor. The following equations describe the TF30-P-3 flow dynamics:

$$\dot{w}_{2.1} = \left(\frac{Ag_c}{l}\right)_{\text{FID+LC}} \int_0^t (P_{2.2}, -P_{2.2}) dt + \dot{w}_{2.1, i}$$
 (84)

$$\dot{w}_{2.2} = \left(\frac{Ag_c}{l}\right)_{HC} \int_0^t (P_3, -P_3) dt + \dot{w}_{2.2, i}$$
 (85)

$$\dot{w}_3 = \left(\frac{Ag_c}{l}\right)_B \int_0^t (P_4, -P_4) dt + \dot{w}_{3,i}$$
 (86)

$$\dot{\mathbf{w}}_{1.3} = \left(\frac{\mathbf{Ag_c}}{l}\right)_{\mathbf{D}} \int_0^t (\mathbf{P}_{1.6}, -\mathbf{P}_{1.6}) dt + \dot{\mathbf{w}}_{1.3, i}$$
 (87)

$$\dot{\mathbf{w}}_{1.6} = \left(\frac{\mathbf{Ag}_{c}}{l}\right)_{DAB} \int_{0}^{t} (\mathbf{P}_{1.7}, -\mathbf{P}_{1.7}) dt + \dot{\mathbf{w}}_{1.6, i}$$
 (88)

Probably the most significant factors in governing the transient behavior of a turbofan engine are the rotor moments of inertia. The rotor speeds were computed by using the conservation of angular momentum. The following equations are used in the TF30-P-3 hybrid simulation to compute the rotor speeds:

$$(NQ)_{HT} = \frac{30J}{\pi} (\Delta h)_{HT} (\dot{w}_4 + K_{BWHT} \dot{w}_{BLHT})$$
 (89)

$$(NQ)_{HC} = \frac{30J}{\pi} \dot{w}_{2.2}(c_{p,3}, T_{3}, -c_{p,2.2}T_{2.2})$$
(90)

$$N_{H} = \frac{30}{\pi I_{H}} \int_{0}^{t} \left[\frac{(NQ)_{HT} - (NQ)_{HC}}{N_{H}} \right] dt + N_{H, i}$$
 (91)

$$(NQ)_{LT} = \frac{30J}{\pi} (\Delta h)_{LT} (\dot{w}_{4.1} + K_{BWLT} \dot{w}_{BLLT})$$
 (92)

$$(NQ)_{FID+LC} = \frac{30J}{\pi} \dot{w}_{2.1}(c_{p, 2.2}, T_{2.2}, -c_{p, 2}T_{2})$$
(93)

$$(NQ)_{FOD} = \frac{30J}{\pi} (\dot{w}_2 - \dot{w}_{2.1})(c_{p, 1.3}, T_{1.3}, -c_{p, 2}, T_2)$$
(94)

$$N_{L} = \frac{30}{\pi I_{L}} \int_{0}^{t} \frac{(NQ)_{LT} - (NQ)_{FID+LC} - (NQ)_{FOD}}{N_{L}} dt + N_{L, i}$$
 (95)

HYBRID SIMULATION

The equations describing the TF30-P-3 mathematical model were implemented by using the Lewis Research Center's Analog and Hybrid Computing Facility. The Lewis EAI Model 690 Hybrid Computing System consists of an EAI 640 Digital Computer, an EAI 693 Hybrid Interface Unit, and an EAI 680 Analog Computer. Two EAI 231-R Analog Computers were also used in this simulation.

The bulk of the calculations were performed on an EAI 680 and two 231-R Analog Computers. The analog computers perform all the operations characteristic of analog machines (i.e., summing, integration with respect to time, multiplication, attenuation, univariate function generation, etc.). The use of peripheral equipment such as x-y plotters and strip-chart recorders allows continuous monitoring by the user of computed variables. All the required analog computers can be tied together by means of a Centralized Trunk System to allow the transmittal of information between analog consoles.

The 640 Digital Computer was used primarily to perform the bivariate function generation associated with fan, compressor, and turbine performance. The digital computer also provided teletypewriter output listings of selected engine variables. In order to minimize the core storage requirements and digital cycle time, scaled-fraction variables and arithmetic routines were used in the digital program. Scaled-fraction variables are limited to values between ± 1 . The use of scaled fractions necessitates the scaling of digital variables in the same manner as the analog variables are scaled.

Figure 8 illustrates the split of the computational load between the various computers used in the TF30-P-3 real-time simulation. The split of the computational load was based on the computing equipment complement of each console and a desire to minimize trunking. The control inputs to the TF30-P-3 simulation (i. e. , \dot{w}_{F4} , \dot{w}_{F7} , $\dot{w}_{F1.7}$, XBL7, XBL12, and A_N) were provided by an independent digital computer representation of the TF30-P-3 hydromechanical control system. That control simulation was implemented on the Lewis SEL 810B computer and is described in a separate report (ref. 10).

Digital Program

<u>MAIN digital program</u>. - The MAIN digital program performs the following tasks in the TF30-P-3 hybrid simulation: (1) reads unscaled component performance data and map scale-factor data by means of paper tape, performs the required map scaling, and stores the scaled map data in the MAP2 COMMON block which is shared with the bivariate function interpolation routine; (2) computes fan inlet conditions P_2 and T_2 from equations (1) to (5) and sets potentiometers on the analog to values corresponding to P_2 ,

T₂, and P₀; (3) accepts map input data from the analog by means of the analog-to-digital converters (ADC's); (4) performs the required function generation by means of calls to the bivariate function interpolation routine MAP2 (discussed in a separate section); (5) outputs map values to the analog by means of the digital-to-analog converters (DAC's); (6) provides teletype listing (if desired) of selected engine variables in both engineering and SI units. Additional ADC's are used to input analog data when obtaining teletype listings.

Appendix B contains a FORTRAN listing of the MAIN digital program and a detailed discussion of its operation. Appendix C contains a description of the required format for digital input data (component performance data). Samples of the digital data format are also provided.

MAP2 function routine. - Because of the nature of the fan and compressor performance maps (figs. 3, 4(a), and 5(a)), rectilinear interpolation cannot be used to generate these functions. Therefore, a radial-interpolation, bivariate-function-generation routine, MAP2, was developed at the Lewis Research Center for generating this type of function. The MAP2 routine is based on the MAPFUN routine described in reference 12. The MAP2 routine uses scaled-fraction arithmetic routines to minimize core storage requirements and execution time. Because of its favorable qualities, MAP2 was also used to perform the bivariate function generation associated with the turbine performance, although rectilinear interpolation could have been used.

Appendix D contains a FORTRAN listing of the MAP2-MAP2L function generation routine and a detailed discussion of its operation. Also included in appendix D is an assembly language listing of MAP2-MAP2L. The assembly language version was used in the real-time simulation of the TF30-P-3 engine to further reduce the execution time and core storage requirements.

The digital program (with assembly language MAP2-MAP2L) required approximately 10 000 words of core storage. The resulting digital sampling interval (with steady analog inputs) was 4.65 milliseconds.

Analog Program

The analog portion of the TF30-P-3 hybrid simulation performs all the required computations except the bivariate function generation previously discussed. The analog computation load is split between the 680 Analog Computer and two 231-R Analog Computers. The 680 Analog Computer also serves as the interface between the engine simulation and the SEL 810B digital control simulation. Approximately 185 amplifiers and 85 multipliers were required to perform the analog calculations.

Appendix E contains the analog patching diagrams for the TF30-P-3 hybrid simulation. For the most part, conventional analog techniques were used to implement the

engine model. Scale factors are not shown on the analog diagrams. Appendix E also contains a list of the scale factors and a list of the potentiometer settings at the design point. The following sections describe two features of the analog portion of the simulation.

<u>Digital-to-analog multiplier interface.</u> - One of the factors in determining the size (number of consoles) of an analog simulation is the complement of multipliers on each machine. On the 680 Analog Computer, a total of 24 multiuse multipliers are available. These multipliers may be used to multiply, divide, square, or take the square root. As a supplement to the multipliers, the 680 also has six digital-to-analog multipliers (DAM's) which allow a digitally supplied variable to be multiplied by an analog variable with the product appearing on the analog console. Each additional product is obtained at the cost of two DAC channels which may not be used as conventional DAC's. Appendix E contains a list of the products obtained with the DAM feature in the TF30-P-3 real-time simulation.

Analog function generation. - In order to decrease the digital sampling interval, the univariate function generation associated with the low- and high-pressure-compressor bleeds (figs. 4(b) and 5(b)) was performed on the 680 Analog Computer. Two 10-segment, variable-diode function generators (VDFG's) were used. The map input variables $(^{N}_{c})_{LC,\,M}$ and $(\dot{w}_{c})_{HC,\,M}$ were computed on the analog from equations (16) and (22), respectively, and transmitted to the digital by ADC's.

Two 10-segment, fixed-diode function generators (FDFG's) were used on the 231-R Analog Computers to calculate the core and duct nozzle compressible flow functions FN7 and FN17. These functions (eqs. (51) and (57)) assume a constant specific-heat ratio γ of 1.4.

RESULTS AND DISCUSSION

Steady State

The TF30-P-3 hybrid simulation with digital control was evaluated over a range of steady-state operating conditions. The purpose of the steady-state evaluation was to test the various curve fits and assumptions in the hybrid model.

With the simulation operating at the sea-level, standard-day, static, military power point, excursions along the operating line were made by ramping the PLA signal to a desired power setting. After the transient settled out, a steady-state listing of selected variables was obtained at the teletype. Table I contains the teletype data for the sealevel, static operating line for power settings of 15° (idle). 70° , and 120° (full augmentation).

Figure 9 contains plots of a number of the hybrid-computer-simulated engine variables over the range of power settings. For comparison, the corresponding values obtained from the baseline digital program were also plotted. In order to better match the digital data at the very low power settings, the 12th-stage bleed opening (XBL12) was limited to 70 percent of its fully open value (table I(a)).

Figure 9 shows good agreement between hybrid and digital data at PLA's above 30°. Below 30°, discrepancies occurred in the sensitivities of rotor speeds and compressor discharge pressure to the power lever angle. For power lever angles below 30°, the hybrid-computer-simulated fuel flow exceeded the baseline digital value. This resulted in discrepancies in rotor speeds, temperatures, and so forth, for this range of power lever angles. However, because of the nature of the control design, errors in the engine variables can also cause errors in control outputs such as fuel flow. The observed differences in fuel flow, rotor speeds, and compressor discharge pressure were probably due to inaccuracies in the engine model at the low power settings.

Since almost all the previously discussed assumptions were based on sea-level, static, operating-line data, it was decided to evaluate the steady-state performance of the hybrid simulation at a different flight condition. The steady-state data acquisition was repeated for a 6.096-kilometer (20 000-ft), Mach 1.2 flight condition. For this flight condition, the 12th-stage bleed was closed for the entire operating line, and its effect on the compressor performance need not be considered. The fan inlet conditions for this flight condition were computed by the digital program and were $P_2 = 11.205$ N/cm² (16.252 psia) and $T_2 = 320.25$ K (576.45° R). Table II and figure 10 contain the teletype listings and comparison plots for this flight condition.

For this flight condition, excellent agreement between hybrid and digital data was observed at the low power settings. Some discrepancies were observed in the range of power lever angles between $45^{\rm O}$ and $69^{\rm O}$. Some unexplained irregularities were observed in the digital values of $P_{\rm S,3}$, T_4 , $\dot{\rm w}_2$, and $N_{\rm L}$ in this range of power settings. In general, however, the same basic trends were observed in both the hybrid and digital data.

Other discrepancies were observed in the augmentation range of PLA between 110° and 120° . In the digital model, the nozzle area reached its maximum value only at a PLA of 120° , while in the hybrid model the area was near its maximum at 110° . This contributes to the observed differences in augmentor fuel flow since these control outputs are correlated in the digital control.

The general agreement of hybrid and digital data shown in figures 9 and 10 substantiates the assumptions of (1) constant combustor efficiency, (2) linear pressure ratio temperature ratio relations, and (3) pressure-sensitive flow coefficients for the core and duct nozzles. The agreement of hybrid and digital data also substantiates the fan and compressor models used in the real-time simulation.

The observed discrepancies at low power settings can be compensated for by manipulation of the compressor bleeds (if applicable). Perhaps a more satisfactory solution to

the problem of matching steady-state data at low power settings is to implement variable specific heats c_p at the compressor discharge stations. Experience with similar simulations indicates that linear c_p -T relations, used only in the load torque calculations (eqs. (90) and (93)) have strong effects on the speed split at low power settings and can be ''tuned'' to match low-power-setting data. This problem is eliminated completely in the simulation described in reference 7, where all fluid properties are assumed to be variable. Unfortunately, the necessary computing equipment and computing time were not available to do this in this simulation.

The use of digitally implemented bivariate functions in the hybrid simulation did result in a better wide-range match of steady-state data than previously obtained by the authors in all-analog simulations.

Transients

The TF30-P-3 hybrid simulation with digital control was evaluated for power lever slams (rapid increases) and chops (rapid decreases) between idle and military power settings and also between military power and full-augmentation power settings. Transients were run only for sea-level, standard-day, static conditions. Data obtained with the hybrid simulation were compared with the corresponding baseline digital data. The power lever angle signal was ramped from its initial value to its final value at a rate corresponding to 125 degrees per second. Selected analog variables were recorded by using strip-chart recorders. Details of the TF30-P-3 control simulation are contained in reference 13.

The simulation was operated at the idle power setting (PLA = 15^{O}). Table I(a) lists steady-state values for selected engine variables at that operating point. The power lever angle was then ramped to a value (67^{O}) slightly below the military power setting (69^{O}). The 2^{O} margin in power lever angle was chosen so as not to inadvertently initiate augmentation.

Figure 11 shows the response of selected engine variables to this throttle slam. Also shown are the corresponding baseline digital simulation variables. The power lever angle reached its final value in approximately 0.4 second. Significant increases in the combustor fuel flow (commanded by the digital control) were not seen until about 0.7 second into the transient.

The digital simulation of the fuel control (ref. 13) includes a secondary fuel manifold fill-drain calculation. The filling of the manifold was initiated when the commanded fuel flow reached 0. 1260 kilogram per second, which is approximately equal to the sealevel, static, idle fuel flow. The manifold was filled when the commanded fuel flow reached 0. 1638 kilogram per second. When the manifold was filled, the commanded fuel flow reached the engine without the lag associated with the fill dynamics. Figure 11 in-

dicates that the manifold filling took 0.7 second in the hybrid simulation and 1.0 second in the digital simulation. This time difference was a result of the fuel flow differences caused by the discrepancies in the engine models at the low power settings.

Comparison with digital data indicates that the hybrid simulation variables responded more rapidly to the PLA slam. The differences in the T_4 , $P_{s,\,3}$, and N_H responses were caused by the differences in fuel flow supplied by the control.

The 12th-stage bleed doors which are open at the idle condition are closed during the acceleration when the low-pressure-compressor discharge static pressure exceeds 1.481 P_2 + 6.254 N/cm 2 . Figure 11 shows that the hybrid simulation bleed doors closed approximately 0.6 second before the digital simulation bleed doors. This was due to the faster response of $P_{s,\,2,\,2}$ in the hybrid simulation.

The nozzle area was at its maximum value at the static, idle condition. It was reduced to its minimum value (fig. 11(e)) by the digital control at a rate consistent with the baseline digital simulation.

The hybrid simulation was operated at the PLA = 67° condition. A throttle slam was then run with the PLA signal ramped to 120° at the same 125-degree-per-second rate. Table I(c) lists steady-state engine variables at the full-augmentation condition. Figure 12 shows the resulting response of selected engine variables to this throttle slam. Also shown are the corresponding baseline digital variables. The fuel flows to the five augmentor zones are metered as functions of PLA, N_H , T_2 , and $P_{s,3}$. The nozzle area is increased by the digital control so as to maintain a scheduled ratio of $P_{s,3}/P_6$ during the augmentor operation. This maintains all engine variables upstream of the augmentor approximately constant at their military power values.

Figure 12 indicates that the timings of the zone fuel flow initiations in the hybrid and digital simulations are in general agreement. Differences of 0.1 to 0.2 second were observed, except for zone 4. Zone 4 fuel flow came on about 0.5 second early apparently because of an incorrect hold calculation in the simulated augmentor control. This hold was intended to represent the time required to fill the zone 4 manifold.

Figure 12(h) shows agreement between the nozzle area responses. The same 0.1-to 0.2-second delay for the digital response was observed. The agreement in the area responses indicates that the augmentor inlet and high-pressure-compressor discharge pressure dynamics are approximately the same in the hybrid and digital simulations.

Figures 13 and 14 contain the hybrid and baseline digital engine responses to throttle chops from PLA = 120° to PLA = 67° and from PLA = 67° to PLA = 15° , respectively. Figure 13 shows agreement between the hybrid and baseline digital results for full augmentation to military chop. The timings of zone fuel flow shutoffs and the magnitudes of the selected engine variables are in agreement. Figure 13(i) does show slightly less damping in the hybrid simulation's response of P_6 .

Figure 14 shows excellent agreement between the hybrid and baseline digital results for the military-to-idle chop. The response of fuel flow (and hence, $P_{s,3}$ and T_4) agrees since the line fill problem that existed for the corresponding acceleration does not exist at the start of the deceleration. This results in excellent agreement in the opening of the 12th-stage bleed when $P_{s,2,2}=1.543\ P_2+6.495\ N/cm^2$. The response of the temperature T_4 to the throttle chops and slams was obtained by decreasing the gain of the (WT) $_4$ integrator (eq. (66)) by a factor of 25. This was necessary to match the baseline digital response and was an attempt to represent heat-transfer effects in the combustor. These effects were considered in the baseline digital program but were not included in the hybrid model.

Frequency Responses

A comparison of the hybrid and baseline digital engine dynamics (independent of the control) can be accomplished by opening the loops between the engine and the engine control. This was done with the hybrid simulation at the sea-level, static, PLA = 50° operating point. A constant combustor fuel flow was supplied to the engine with the 12th-stage bleed closed and the nozzle area at its minimum value. A sinusoidal fuel flow signal was superimposed on the constant fuel flow signal, resulting in sinusoidal oscillations in engine variables such as rotor speeds and pressures. The amplitude of the driving signal was ± 10 percent of the constant input fuel flow. Both the driving signal and a selected output signal were input to an analog transfer function analyzer which calculated the amplitude ratio of and the phase angle between the two signals.

Figures 15 to 17 contain the frequency responses of the high-pressure-rotor speed, the high-pressure-compressor discharge static pressure, and the core augmentor inlet pressure, respectively, to fuel flow perturbations. Also plotted are the results from a similar procedure using the baseline digital simulation and a digital transfer function analyzer. The digital transfer function analyzer could not perform adequately above 1.3 hertz because of low signal levels. The analog transfer function analyzer had provisions for increasing the signal levels at the higher frequencies, allowing analysis to 10 hertz.

Figure 15 shows general agreement between the hybrid and digital responses of N_{H} . Since the low-frequency dynamics are caused primarily by rotor inertia, agreement in the dynamics indicates that the rotor dynamics have been adequately modeled in the hybrid simulation. The observed difference in the steady-state gain (normalizing factor) would seem to indicate a discrepancy in the steady-state engine models. However, the steady-state digital data presented in figures 9(a) and (b) show a sensitivity

$$\frac{\Delta N_H}{\Delta \dot{w}_{F4}} = \frac{\Delta N_H / \Delta P L A}{\Delta \dot{w}_{F4} / \Delta P L A}$$

of 0.992 $\rm rpm/(kg/hr)$, which is close to the value obtained from the hybrid simulation data. Therefore, errors in the digital analyzer results are suspected.

Figure 16 shows the frequency response of the high-pressure-compressor discharge static pressure. Significant differences were observed in both the steady-state gain and the dynamics. The hybrid data show a break frequency around 2 hertz with higher order dynamics above 1 hertz. The higher frequency dynamics may be attributable to the inclusion of combustor momentum effects in the combustor. The digital response is flat with increasing phase lag, characteristic of a dead time. A study of the transient response of $P_{s,\,3}$ to the PLA chop from 67° to 15° (fig. 14) shows a lag rather than a dead time between $P_{s,\,3}$ and \dot{w}_{F4} . Again, errors in the digital analysis are suspected.

Figure 17 compares the hybrid and digital responses of P_6 to the \dot{w}_{F4} oscillations. Agreement in the steady-state gain was observed. The dynamics were in general agreement in the low-frequency range. However, the hybrid data show a resonant condition at about 3 hertz. The digital data indicate a similar condition above 1 hertz, but the inability of the digital analyzer to function above 1.3 hertz prevented a real comparison in that frequency range. The observed resonant condition may be attributable to duct dynamics since the pressure P_6 is assumed to be proportional to the duct augmentor pressure $P_{1.6}$.

CONCLUDING REMARKS

A real-time hybrid simulation of the TF30-P-3 turbofan engine has been developed. The simulation is primarily analog in nature but does use the digital portion of the hybrid computer to perform bivariate function generation associated with modeling the performance of the engine's rotating components. The digital sampling interval is approximately 4.6 milliseconds and does allow real-time simulation without compensation for the phase lag caused by the digital sample-and-hold process.

The hybrid simulation was based on the engine model used in a baseline digital simulation provided by the engine manufacturer. Differences between the hybrid and digital models were dictated by the real-time requirement. The hybrid model assumes constant fluid properties and combustor efficiencies to minimize analog equipment requirements. The hybrid model also includes momentum effects in the compressors and combustors which allow the use of flow as an input to the compressor performance maps without the need for iteration.

Results from the hybrid and digital simulations were compared. These comparisons indicated that the real-time hybrid simulation does adequately match the baseline digital

simulation for both steady-state and dynamic conditions. Discrepancies at low power settings did result in faster hybrid responses for accelerations from idle to military power. These discrepancies could be minimized by considering the effects of variable specific heats on the engine balance at low power settings.

The real-time hybrid simulation provides a valuable analytical tool for research studies involving the TF30-P-3 turbofan engine. In particular, digital controls may be developed and tested on the simulation prior to actual engine testing. Transient data obtained with the hybrid simulation and a digital control are presented. These data indicate that the simulation does provide a realistic test vehicle for the control. In fact, the generation of the data presented did result in the discovery of a number of 'bugs' in the control which might otherwise have gone undetected.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, July 8, 1974,
501-24.

APPENDIX A

SYMBOLS

```
cross-sectional area, cm<sup>2</sup> (in. <sup>2</sup>)
Α
         nozzle flow coefficient
C^{q}
         specific heat, J/kg-K (Btu/lbm-OR)
c_{p}
         time increment, sec
dt
         core nozzle flow function
FN7
FN17
         duct nozzle flow function
         general function, i = 1, 10
f_i
         flow parameter, kg-K-cm<sup>2</sup>/N-rpm-sec (lbm-OR-in. 2/lbf-rpm-sec)
fp
         gravitational conversion factor, 100 \text{ cm-kg/N-sec}^2 (386.3 lbm-in./lbf-sec<sup>2</sup>)
g_c
         heating value of fuel, J/kg (Btu/lbm)
HVF
          enthalpy drop, J/kg (Btu/lbm)
\Delta h
          enthalpy drop parameter, J/kg-K^{1/2}-rpm (Btu/lbm-^{0}R^{1/2}-rpm)
hp
         polar moment of inertia, N-cm-sec<sup>2</sup> (in.-lbf-sec<sup>2</sup>)
I
          work conversion factor, 100 N-cm/J (9339.6 in.-lbf/Btu)
J
K
          constant (appropriate units)
          length, cm (in.)
l
          Mach number
M
          second function map index, m = 7 to 12
m
          rotor speed, rpm
N
          first function map index, m = 1 to 6
n
          total pressure, N/cm<sup>2</sup> (psia)
P
P/P
          pressure ratio
PLA
          power lever angle, deg
          torque, N-cm (in. -lbf)
Q
          gas constant of air, N-cm/kg-K (in.-lbf/lbm-^{\rm O}R)
R_A
          total temperature, K (OR)
 T
          temperature ratio
 T/T
```

```
V volume, cm<sup>3</sup> (in. <sup>3</sup>)
```

XI ADC channel I input,
$$I = 0, 23$$

$$x_j$$
 array of x inputs for j^{th} value of y input, $j = 1, 8$

$$YI$$
 DAC channel I input, $I = 0, 23$

$$ZSC(1)$$
 scale factor on first function of x and y

$$ZSC(2)$$
 scale factor on second function of x and y

$$\mathbf{z}_2$$
 second function of \mathbf{x} and \mathbf{y} (normalized by design-point value)

$$z_{1j}$$
 array of first function outputs for j^{th} value of y, $j = 1, 8$

$$z_{2j}$$
 array of second function outputs for j^{th} value of y, $j = 1, 8$

$$\theta$$
 total temperature (normalized by standard-day value)

$$au$$
 time constant, sec

Subscripts:

BWLT portion of low-pressure-turbine bleed doing work

CAB core augmentor

CN core nozzle

c corrected to inlet conditions

D duct

DN duct nozzle

F fuel

FAN total fan

FID fan hub section

FID+LC fan hub and low-pressure compressor

FZ1 augmentor zone 1

FZ2 augmentor zone 2

FZ3 augmentor zone 3

FZ4 augmentor zone 4

FZ5 augmentor zone 5

FOD fan tip section

H high speed

HC high-pressure compressor

HT high-pressure turbine

I inlet

i initial condition

L low speed

LC low-pressure compressor

LT low-pressure turbine

M map

MIN minimum value

N total nozzle

PR6 core-duct pressure ratio

s static

0 ambient

- 1.3 fan tip discharge
- 1.6 duct augmentor inlet
- 1.7 duct nozzle inlet
- 1.8 duct nozzle throat
- 2 fan inlet
- 2.1 fan hub discharge
- 2.2 low-pressure-compressor discharge
- 3 high-pressure-compressor discharge
- 4 high-pressure-turbine inlet
- 4.1 low-pressure-turbine inlet
- 5 low-pressure-turbine discharge
- 6 core augmentor inlet
- 7 core nozzle inlet
- 8 core nozzle throat

Superscript:

()' inlet to mixing station

FORTRAN symbols - MAIN program:

AN total nozzle area, in. 2

ANSI total nozzle area, m²

ETAI inlet efficiency

I integer

IERR error flag for linkage routines

IX array containing number of points per curve for each map pair

J integer

JX map scaling index

JY array containing number of curves for each map pair

JZ1 map scaling index

JZ2 map scaling index

KX array containing x out-of-range counts for each map pair

KY array containing y out-of-range counts for each map pair

M integer

MAP2 bivariate function (first function)

MAP2L bivariate function (second function)

MM function relay address

M0 Mach number

N map index

NCV number of curves for map being read in

NTBL number of data points for map being read in

NX number of points per curve for map being read in

NY number of curves for map being read in

PADR array of addresses of digitally set potentiometers

PLA power lever angle, deg

PS22 low-pressure-compressor discharge static pressure, psia

PS22SI low-pressure-compressor discharge static pressure, N/cm²

ps3 high-pressure-compressor discharge static pressure, psia

PS3SI high-pressure-compressor discharge static pressure, N/cm²

PVAL array of settings for digitally set potentiometers

po ambient pressure, psia

POSI ambient pressure, N/cm²

P2 fan inlet pressure, psia

P2Q0 inlet pressure ratio

P2SI fan inlet pressure, N/cm²

P3Q22 high-pressure-compressor pressure ratio

QRBADS linkage routine for reading ADC's

QSHYIN linkage routine for console selection

QSRUN linkage routine for setting logic mode

QSSECF linkage routine for setting time scale

QSTDA linkage routine for transferring DAC contents

QWBDAS linkage routine for loading DAC registers

QWFRL linkage routine for setting function relays

QWPR linkage routine for setting potentiometers

SENSW logical array for testing sense switches

TO ambient temperature, ^OR

TOSI ambient temperature, K

T2 fan inlet temperature, OR

T2Q0 inlet temperature ratio

T2SI fan inlet temperature, K

T22 low-pressure-compressor discharge temperature, OR

T22SI low-pressure-compressor discharge temperature, K

T3 high-pressure-compressor discharge temperature, OR

T3SI high-pressure-compressor discharge temperature, K

T4 high-pressure-turbine inlet temperature, OR

T4SI high-pressure-turbine inlet temperature, K

T6 core augmentor inlet temperature, OR

T6SI core augmentor inlet temperature, K

VALS array containing unscaled, normalized map data

VI potentiometer settings, I = 1, 3

WA2 fan airflow, lbm/sec

WA2SI fan airflow, kg/sec

WAR2 fan corrected airflow, lbm/sec

WAR22M low-pressure-compressor map corrected airflow, lbm/sec

WF4 combustor fuel flow, lbm/sec

WF4SI combustor fuel flow, kg/sec

WF7 core augmentor fuel flow, lbm/sec

WF7SI core augmentor fuel flow, kg/sec

WF17 duct augmentor fuel flow, lbm/sec

WF17SI duct augmentor fuel flow, kg/sec

WR22SI low-pressure-compressor corrected airflow, kg/sec

XI ADC input variables, I = 0, 23

XNH high-pressure-rotor speed, rpm

XNL low-pressure-rotor speed, rpm

XNLR2 fan corrected speed, rpm

XSC scale factor for x breakpoints on map being read in

XVALS array containing scaled x breakpoints for each map pair

YI array containing DAC initial conditions

YI DAC output variables, I = 0, 23

YSC scale factor for y breakpoints on map being read in

YVALS array containing scaled y breakpoints for each map pair

ZSC(1) scale factor for first function in map pair being read in

ZSC(2) scale factor for second function in map pair being read in

ZVALS array containing scaled map outputs for each map pair

FORTRAN symbols - MAP2 (MAP2L) function routine:

I index for x breakpoints

IX array of last search indices for x breakpoints

J index for y curves

JY array of last search indices for y curves

KX array of x out-of-range counts

KY array of y out-of-range counts

MAP2 bivariate function (first function)

MAP2L bivariate function (second function)

N map index

NX array of number of points per curve

NXP number of points per curve for map being read

NY array of number of curves per map

NYC number of curves for map being read

XFRAC fractional location of XIN between XLO and XHI

XHI $(I + 1)^{th}$ breakpoint on inferred YIN curve

XIN x input to map

XLO Ith breakpoint on inferred YIN curve

XVALS array of scaled x breakpoints for each map pair

YIN y input to map

YINCR fractional location of YIN between J^{th} and $(J + 1)^{th}$ curves

YVALS array of scaled y breakpoints for each map pair

ZL map output for XLO, YIN inputs

ZR map output for XHI, YIN inputs

ZVALS array of scaled map outputs for each map pair

APPENDIX B

MAIN DIGITAL PROGRAM - DESCRIPTION AND FORTRAN LISTING

Description

The primary function of the MAIN digital program is to read the bivariate function input variables on the ADC channels, to call the function generation routine MAP2, and to transfer updated function output variables to the analog computer through the DAC channels.

The MAIN digital program and the function generation routine MAP2 are capable of handling as many as six pairs of bivariate functions, with each function described by as many as eight curves and 10 points per curve. A COMMON block MAP2 is shared by the MAIN digital program and MAP2 (see FORTRAN listings). This COMMON block contains arrays for function data XVALS, YVALS, and ZVALS; search indices IX and JY; argument dimensions NX and NY; and out-of-range counters KX and KY.

The MAIN digital program reads the unscaled, but normalized, component performance data and associated scale factors and stores the data in the VALS array. Appendix C contains samples of the required format for reading the data. The data in the VALS array are divided by the appropriate scale factor; and the results are stored in the XVALS, YVALS, and ZVALS arrays. The search indices and out-of-range counters are initialized, and the argument dimensions are stored in the NX and NY arrays. The functions of the search indices and out-of-range counters are discussed in appendix D.

After scaling and storing the component performance data, the MAIN digital program reads scaled-fraction DAC initial-condition data. These data are stored in the YI array. By initializing the DAC's with specified values, the user can check the analog portion of the simulation prior to entering the digital computation loop. Appendix C contains a sample of the required format for the DAC initial condition data. Unused DAC's are initialized to zero.

Table III lists the scaled variables and associated DAC channels which are transmitted to the EAI 680 Analog Computer by the MAIN digital program. Since the desired initial condition corresponds to the engine design point, the initial values of the scaled map outputs should be equal to the inverse of the map output scale factors.

After initializing the DAC's, the MAIN digital program reads, from the teletype, unscaled values for the variables P_0 , T_0 , and M_0 . The program calculates analog potentiometer settings corresponding to the variables P_2 , T_2 , and P_0 for the specified flight condition. The analog portion of the simulation is discussed in appendix E. The potentiometers to be set by the digital computer are specified as input data by means of paper tape. The format used for this data input is illustrated in appendix C.

The main computation loop in the MAIN digital program starts at statement 30. At this point, the required analog data are read from the appropriate ADC's and stored in the locations specified by the arguments used in the call to the QRBADS linkage routine. These arguments indicate that a total of 10 ADC's are to be read, starting with ADC0. The contents of these ADC's are to be stored sequentially in the locations reserved for the variables listed in the SCALED FRACTION declaration, starting with the variable X0.

Table IV lists the ADC's and the associated scaled input variables received from the EAI 680 Analog Computer. The scale factors associated with the map inputs are equal to the products of the design-point values and the XSC (or YSC) scale factors specified with the map data. For example, at the design point, ADC channel 5 receives a scaled signal equal to 1.0/1.9045, or 0.52507.

The MAIN digital program then calls the function generation routine MAP2 with the appropriate input variables. The calling statement is of the form:

$$z_1 = MAP2(n, x, y)$$

The scaled map output values returned by MAP2 are transferred through the DAC channels to the analog computer. For certain of the functions, another called statement $z_2 = MAP2L(m)$ is used. The reason for using a different calling statement is discussed in appendix D.

After the DAC variables in table III are transferred, a sense switch on the 640 control console is tested to determine if additional data are to be input from the analog. If the sense switch is depressed (analog should be in "HOLD" mode), the ADC channels listed in table V are read. Before teletype listing, the variables to be listed are unscaled to allow listing with both engineering and SI units. After teletype listing, the program returns to statement 30, where updated ADC's are read.

FORTRAN Listing

```
DIMENSION VALS(248),ZSC(2),PADR(3),PVAL(3)

C****ADC VARIABLES

SCALED FRACTION X0,X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,

1 X14,X15,X16,X17,X18,X19,X20,X21,X22,X23

C****DAC VARIABLES

SCALED FRACTION Y4,Y5,Y6,Y7,Y8,Y9,Y10,Y11

C*****OTHER VARIABLES

SCALED FRACTION XVALS(10,8,6),YVALS(8,6),ZVALS(10,8,12),YI(24),

1 MAP2,MAP2L,V1,V2,V3,SSQRT

COMMON/MAPS/XVALS,YVALS,ZVALS,IX(6),JY(6),NX(6),NY(6),KX(6),KY(6)

LOGICAL SENSW

REAL M0
```

```
C****INPUT REAL COMPONENT MAP DATA AND SCALE FACTORS
      TYPE 1
    1 FORMAT(/3x,54HPLACE DATA TAPE FOR MAPS NO. 1-8 IN HSPTR. THEN R-S-
     1R./)
      PAUSE
      DO 18
             N=1,4
      READ(4,3) XSC, YSC, ZSC(1)
    3 FORMAT(4F11.4)
      IF(N-4) 4.5.5
    4 NC V=8
      GO TO 6
    5 NCV=7
    6 NTBL=17*NCV
      READ(4,7)(VALS(I),I=I,NCV)
    7 FORMAT(8F8.2)
      J = NC V+1
      READ(4,8)(VALS(I), I=J, NTBL)
    8 FORMAT(8F8.4)
C*****CALE COMPONENT MAP DATA
      DO 9 J=1,NCV
DO 9 I=1,8
      YVALS (J, N)= VALS (J) /YSC
      JX = NCV + 2*((J-1)*8+1)-1
      XVALS(I,J,N)=VALS(JX)/XSC
    9 ZVALS(I,J,N)=VALS(JX+1)/ZSC(1)
      IX(N)=1
      JY(N)=1
      NX(N)=8
      NY(N)=NCV
      KX(N)=0
      KY(N)=#
   18 CONTINUE
      NC V=8
      NTBL = NC V * 31
      DO 13 N=5,6
      READ(4,3) XSC,YSC,ZSC(1),ZSC(2)
      READ(4,11)(VALS(I), I=1, NCV)
      J = NCV + 1
      READ(4,1!)(VALS(I),I=J,NTBL)
   11 FORMAT(18F7.4)
      DO 12 J=1,NCV
      YVALS(J, N)=VALS(J)/YSC
      DO 12 I=1.10
      JX = NCV + 30 * (J - 1) + I
      XVALS(I,J,N)=VALS(JX)/XSC
      JZ1=JX+1 0
      ZVALS(I,J,N)=VALS(JZ1)/ZSC(1)
      JZ2=JX+20
      ZVALS(I,J,N+2)=VALS(JZ2)/ZSC(2)
   12 CONTINUE
      IX(N)=1
      JY(N)=1
       NX(N)=10
       NY(N)=NCV
   13 CONTINUE
C**** INITIALIZE DACS
       TYPE 14
   14 FORMAT(/3X,64HPLACE DATA TAPE FOR DAC INITIAL CONDITIONS IN HSPTR.
```

```
I THEN R-S-R./)
      PAUSE
      READ(4,15)(YI(I),I=1,24)
   15 FORMAT (5S8)
C****INITIALIZE ANALOG CONSOLE
      CALL QSHYIN(IERR, 688)
      CALL QSRUN(IERR)
      CALL QSSECF(IERR)
      DO 200 M=1,24
      MM=5*M-1
      CALL QWFRL (MM, .FALSE., IERR)
  200 CONTINUE
C****TRANSFER INITIAL DAC VALUES
      CALL QWBDAS(YI, 0,24, IERR)
      CALL QSTDA
C****SPECIFY OPERATING CONDITIONS FOR ENGINE
      TYPE 16
   16 FORMAT(/3X,33HTYPE DESIRED VALUES FOR P8,T8,M8./)
      ACCEPT 17,P8,T8,M8
   17 FORMAT(F7.3, F8.3, F5.2)
      T2Q8=(1.+.2*M8*M8)
      P2Q8=T2Q8**3.5
      ETAI=1.0
      IF(MB.LE.1.) GO TO 18
      ETAI=1.0-.075*(M0-1.0)**1.35
   18 T2=T2Q8*T#
      P2 = P2 Q6*P 0*ETAI
      P#SI=P#*.68948
      T#SI=T#*.55555
      P2SI=P2*.68948
      T2SI=T2*.55555
      TYPE 19,P2,T2
   19 FORMAT(/3x,5HP2 = ,F7.3,7H, T2 = ,F8.3/)
      VI=P2/40.
      V2=T2/1666.
      V3=P0/40.
 ****SET POTS WHICH ARE SENSITIVE TO OPERATING CONDITIONS
      TYPE 20
  28 FORMAT(/3X,55HPLACE DATA TAPE FOR POT ADDRESSES IN HSPTR. THEN R-S
     1-R./)
      PAUSE
     READ(4,22)(PADR(I), I=1,3)
  22 FORMAT(8A5)
     PVAL(1)=V1
      PVAL(2)=V2
      PVAL (3) = V3
     DO 25 I=1,3
DO 23 J=1,3
      CALL QWPR (PADR (I), PVAL (I), IERR)
      IF(IERR.EQ.1) GO TO 25
  23 CONTINUE
      TYPE 24.PADR(I).IERR
   24 FORMAT(3X, A4, 9H IERR = , I1/)
      PAUSE
   25 CONTINUE
      TYPE 26
   26 FORMAT(3x,55HSLAVE CONSOLES 4 AND 5 TO CONSOLE 1. MANUALLY GO TO I
     1C.)
```

```
TYPE 29
  29 FORMAT(/3X,44HPROCEED TO DYNAMIC PART OF PROGRAM BY R-S-R./)
      PAUSE
C****READ ADC VALUES AND GENERATE MAP OUTPUTS
   30 CALL QRBADS (X0,0,10, IERR)
      Y7=MAP2(1,X0,X1)
      Y4=MAP2 (2,X8,X1)
      Y5=MAP2 (3, X2, X3)
      Y6=MAP2 (4,X4,X5)
   32 Y8=MAP2 (5, X6, X7)
      Y9=MAP2L(7)
   34 Y10=MAP2 (6, X8, X9)
      Y11=MAP2L(8)
C****TRANSFER UPDATED DAC VALUES TO ANALOG
   35 CALL QWBDAS (Y4,4,8, IERR)
      CALL QSTDA
C****OUTPUT UNSCALED DATA AT TELETYPE IF DESIRED
      JF(.NOT.SENSW(I)) GO TO 30
      CALL QRBADS (X18,18,14, IERR)
      WF4=X16
      WF4=WF4*3.
      WF4SI=WF4*.45359
      WF7=X18
      WF7=WF7*6.
      WF7SI=WF7*.45359
      WF17=X15
      WF17=WF17*8.
      WF17SI=WF17*.45359
      AN=X13
      AN=AN*1688.
       ANSI=AN*. 00064516
      PS22=X14
      PS22=PS22*150.
      PS22SI=PS22*.68948
      PS3=X11
       PS3=PS3*400.
       PS3SI=PS3*.68948
       T22=X16
       T22=T22*1500.
       T22S I = T22*.55555
       T3=X17
       T3=T3*2888.
       T3SI=T3*.55555
       T4=X12
       T4=T4*4888.
       T4SI=T4*.55555
       T6=X19
       T6=T6*2000.
       T6SI=T6*.55555
       WAR2= Y7
       WAR2=WAR2*25 #.
       WA2=(WAR2*P2*1.5497)/SQRT(T2)
       WA25I=WA2*.45359
       XNLR2=XI
       XNLR2= XNLR2*2888.
       XNL=.04391*XNLR2*SQRT(T2)
       WAR22M=X4
       WAR22M=WAR22M*40.
```

```
WR22S I= WAR22M*.45359
    P3Q22= Y6
    P3Q22=P3Q22*5.
    XNH= X2 0
    XNH= XNH*2000.
    PLA= X23
    PLA=PLA*150.
    TYPE 99
 99 FORMAT(18X,36HTF38-P3 SIMULATION STEADY-STATE DATA//)
    TYPE 100,PASI,PO
100 FORMAT (5 X, 9HP0
                         = ,F7.3,9X,7HN/SQ CM,7X.2H( ,F7.3.9X.8HPSIA
                                                                          )
   1)
    TYPE 101, TOSI, TO
181 FORMAT(5X,9HT8
                         = .F7.2.9X.7HK
                                              ,7X,2H( ,F7.2.9X.8HR
                                                                           )
   1)
    TYPE 182,M6
102 FORMAT (5x,9HM0
                         = ,F7.4)
    TYPE 103, P2SI, P2
183 FORMAT (5x,9HP2
                         = ,F7.3,9X,7HN/SQ CM,7X,2H( ,F7.3,9X,8HPSIA
   1)
    TYPE 184, T251, T2
184 FORMAT (5x,9HT2
                         = ,F7.2.9X.7HK
                                              ,7X,2HC ,F7.2,9X,8HR
                                                                          )
   1)
    TYPE 185,PLA
185 FORMAT(5x,9HPLA
                         = ,F7.2,9X,3HDEG)
    TYPE 186, WF4SI, WF4
186 FORMAT (5x,9HWF4
                        = ,F7.4,9X,7HKG/SEC ,7X,2H( ,F7.4,9X,8HLBM/SEC)
   1)
    TYPE 187, WF7SI, WF7
1#7 FORMAT(5X.9HWF7
                        = ,F7.4,9X,7HKG/SEC ,7X,2H( ,D7.4,9X,8HLBM/SEC)
   1)
    TYPE 108, WF17SI, WF17
168 FORMAT (5x, 9HWF17
                        = ,F7.4,9X,7HKG/SEC ,7X,2H( ,F7.4,9X,8HLBM/SEC)
   1)
    TYPE 189, X21
189 FORMAT(5x,9HXBL7
                        = ,57)
    TYPE 118, X22
11 FORMAT (5X,9HXBL12
                        = ,S7)
    TYPE 111, ANSI, AN
111 FORMAT (5x,9HAN
                        = ,F7.5,9X,7HSQ M
                                              ,7X,2H( ,F7.1,9X,8HSQ IN
   1)
    TYPE 112,XNH
112 FORMAT(5x,9HXNH
                        = ,F7.0,9\times,3+RPM)
    TYPE 113,XNL
113 FORMAT(5x,9HXNL
                        = ,F7.0,9x,3HRPM)
    TYPE 114, PS22SI, PS22
114 FORMAT (5x,9HPS22
                        = ,F7.3,9X,7HN/SQ CM,7X,2H( ,F7.3,9X,8HPSIA
                                                                          )
   1)
    TYPE 115.PS3SI.PS3
175 FORMAT(5x,9HPS3
                        = ,F7.2,9X,7HN/SQ CM,7X,2H( ,F7.2,9X,8HPSIA
                                                                          )
   1)
    TYPE 116, WA2SI, WA2
116 FORMAT(5x,9HWA2
                        = ,F7.2,9X,7HKG/SEC ,7X,2H( ,F7.2,9X,8HLBM/SEC)
   1)
    TYPE 117, T2251, T22
117 FORMAT (5X,9HT22
                        = ,F7.2,9\times,7HK
                                              ,7X,2H( ,F7.2.9X,8HR
                                                                          )
   1)
    TYPE 118, T3S1, T3
```

```
)
                                            ,7X,2HC ,F7.1,9X,8HR
118 FORMAT(5X,9HT3
                      = ,F7.1,9X,7HK
   1)
   TYPE 119, T4SI, T4
                                                                        )
                                            ,7X,2H( ,F7.1,9X,8HR
119 FORMAT (5X, 9HT4
                       = ,F7.1,9X,7HK
   1)
    TYPE 128, T6SI, T6
                                             ,7X,2H( ,F7.1,9X,8HR
                                                                       )
                       = ,F7.1,9X,7HK
12# FORMAT(5x,9HT6
   1)
    TYPE 121, WR22SI, WAR22M
121 FORMAT(5X,9HWAR22M = ,F7.3,9X,7HKG/SEC ,7X,2H( ,F7.3,9X,8HLBM/SEC)
   1)
    TYPE 122, P3Q22
122 FORMAT(5x,9HP3Q22 = ,F7.4)
    GO TO 36
    END
```

APPENDIX C

DIGITAL INPUT DATA

In the MAIN digital program, each map or set of component performance data is stored with an identifying map number in the XVALS, YVALS, and ZVALS arrays. The map numbers are required when calling the MAP2 routine to allow the location of the appropriate blocks of stored data. Table VI contains a list of the map numbers for the TF30-P-3 component performance data.

A basic requirement for the MAP2 data is that each curve of a given function must have the same number of breakpoints. However, different maps may have different numbers of curves or breakpoints per curve. In the TF30-P-3 simulation, the fan and compressor maps are represented by eight points per curve, while the turbine maps require 10 points per curve. All maps have eight curves except the high-pressure turbine, which has seven curves.

Tables VII to XII illustrate the format used to input the component performance data. Tables VII to X contain the data for maps 1 to 4, respectively. In the TF30-P-3 simulation, all component performance data are normalized by the sea-level, static, $PLA = 69^{\circ}$ value of the corresponding variable. Although normalized, the input data may exceed unity. In order to use the scaled-fraction function routine MAP2, these data must be scaled in the MAIN digital program. Therefore, the first line of data for each map contains scale factors XSC, YSC, and ZSC(1) which are used to scale the already normalized data. The second line of data contains the normalized y values. The remaining lines of data contain the x and z_1 pairs for each of the ascending values of y. For example, the third line of data contains the normalized values of the first four x and z_1 pairs for the lowest value of y. The fourth line of data contains the normalized map outputs corresponding to the last four x and z_1 for the lowest value of y. The x breakpoints can be different for each of the curves.

Tables XI and XII contain the data for map pairs (5,7) and (6,8), respectively. For convenience, data for pairs of maps describing the performance of a particular component are combined. In order to use the MAP2L feature described in appendix D, breakpoints for both maps in the pair must be common. For each map pair, the first line of data contains scale factors XSC, YSC, ZSC(1), and ZSC(2). The last scale factor is used to scale the second map output z_2 . The second line of data contains the normalized y values. The remaining lines of data contain the x, z_1 , and z_2 values for each of the ascending values of y. For the case of map pairs, the x, z_1 , and z_2 data are separated with a whole line used for each.

The MAIN digital program accepts (by means of paper tape) the scaled-fraction initial conditions for all 24 (numbered 0 to 23) of the DAC's. The first five lines of data

shown in table XIII illustrate the format used to input these data. The last line of data in table XIII illustrates the format used to input the addresses of analog potentiometers to be set by the MAIN digital program for specified flight conditions.

APPENDIX D

MAP2 FUNCTION GENERATION ROUTINE - DESCRIPTION AND FORTRAN AND ASSEMBLY LANGUAGE LISTINGS

Description

MAP2 is a function generation routine developed for the EAI 640 Digital Computer for handling a special type of function of two variables. This special type of function contains curves (constant y values) which are not defined over the same range of the x variable. Examples of such functions are fan and compressor performance maps for turbofan engines. Normal rectilinear interpolation cannot be used for these functions so a special interpolation scheme is used in MAP2.

MAP2 can accommodate six pairs of independent input variables and twelve function output variables. That is, in addition to the six independent bivariate functions, six additional functions can be generated. However, these additional functions each must have arguments and argument breakpoints common to one of the six independent functions. This feature is useful in modeling fans, compressors, and turbines whose performance is usually described by pairs of bivariate functions.

In order to reduce storage requirements and execution time, MAP2 was designed to use scaled-fraction arithmetic and scaled-fraction data. The tables of function data, map input and output variables, and the routine MAP2 itself must be declared as scaled fractions in any program or subroutine which loads the function tables or calls MAP2.

The arrays IX and JY containing the search indices are initialized to 1 in the calling program. These search indices are updated during each execution of MAP2 and are used to speed up the table search for subsequent calls to MAP2. Details of the table search and interpolation scheme are discussed in reference 12.

The arrays KX and KY containing the out-of-range counters for each function are initialized to zero in the calling program. These counters keep track of the number of consecutive times an argument exceeds the range of the input data for its respective map. A limited number of out-of-range calls to MAP2 are allowed in order to permit short-duration increases in map inputs (caused by noise, etc.) without problem interruption. If the out-of-range count reaches 25 for either map input, the program is interrupted and subroutine MOOR (map out of range) is called. In the TF30-P-3 simulation, MOOR places the analog computer in "HOLD," prints an error message at the teletype, and pauses to await the user's corrective action. The maximum allowable out-of-range count and the action taken by MOOR are arbitrary and may be modified for a particular simulation.

As previously discussed, six additional functions can be accommodated by MAP2 if they have arguments and argument breakpoints common to one of the original six functions. This feature reduces the storage requirements for the input data arrays XVALS and YVALS. In addition, the execution time can be reduced by skipping the table search and going directly to the interpolation calculations.

Both FORTRAN and assembly language versions of MAP2 have been developed. These may be used interchangeably. However, for the digital sampling interval lengths required for real-time engine simulation, the assembly language version must be used. Both versions have been written in such a way that overflows are not possible if the scaled-fraction data have been loaded correctly.

In order to handle the additional functions for which the table search can be skipped, an additional entry point, MAP2L, was added to the assembly language version. The calling statement for these functions requires only the map number m. Since the FORTRAN compiler for the EAI 640 Digital Computer does not allow multiple-entry-point subprograms, a separate subprogram, MAP2L, was written.

FORTRAN Listings

```
SCALED FRACTION FUNCTION MAP2(N,XIN,YIN)
      SCALED FRACTION XIN, YIN, YINCR, XHI, XLO, XFRAC, ZL, ZR, Y1, Y2,
     1 MAP2, XVALS(12,8,6), YVALS(8,6), ZVALS(10,8,12)
      COMMON/MAPS/XVALS, YVALS, ZVALS, IX(6), JY(6), NX(6), NY(6), KX(6), KY(6)
C....IF ENTRY IS FROM MAP2L LOCK UP OUTPUT ONLY.
      IF(N.GI.6) GO TO 400
      NYC=NY(N)
      NXP=NX(N)
      I = I \times (N)
      J= JY(N)
  100 YI=YIN-YVALS(J,N)
      IF(Y1.GT..00000S) GO TO 110
      IF(Y1.EQ.. 2000035) GO TO 120
      IF(J.LE.1) GO TO 140
      J= J-1
      GO TO 100
  110 Y2=YIN-YVALS(J+1,N)
      IF(Y2.LT.. ACCUES) GO TO 180
      IF (Y2.EQ..00000S) GO TO 130
      J=J+1
      IF(J.GE.NYC) GO TO 150
       Y1 = Y2
       GO TO 110
  120 YINCR= . 0 3000S
       GO TO 198
  130 YINCR= .99999S
       GO TO 190
  140 YINCR= . 00000S
       GO TO 168
  150 YINCR= .99999S
```

```
J=J-1
  160 IF(KY(N).GE.25) GO TO 500
      KY(N)=KY(N)+1
      GO TO 288
  180 YINCR=Y1/(Y1-Y2)
  190 KY(N)=0
  200 XLO=XVALS(I,J,N)+YINCR*(XVALS(I,J+1,N)-XVALS(I,J,N))
      IF(XIN.GT.XLO) GO TO 210
      IF(XIN.EQ.XLO) GO TO 220
      IF(I.LE.1) GO TO 248
      I = I - 1
      GO TO 200
  210 XHI=XVALS(I+1,J,N)+YINCR*(XVALS(I+1,J+1,N)-XVALS(I+1,J,N))
      IF(XIN.LT.XHI) GO TO 280
      IF(XIN.EQ.XHI) GO TO 23%
      I = I + I
      IF(I.GE.NXP) GO TO 250
      XL0=XHI
      GO TO 210
  220 XFRAC= .00000S
      GO TO 290
  230 XFRAC=.99999S
      GO TO 292
  240 XFRAC= . 300005
      GO TO 260
  250 XFRAC= .99999S
      I = I - 1
  260 IF(KX(N).GE.25) GO TO 500
      KX(N)=KX(N)+I
      GO TO 300
  280 XFRAC=(XIN-XLO)/(XHI-XLO)
  290 KX(N)=0
  300 IX(N)=I
      JY(N)=J
  400 ZR=ZVALS(I+1,J,N)+YINCR*(ZVALS(I+1,J+1,N)+ZVALS(I+1,J,N))
      ZL=ZVALS(I,J,N)+YINCR*(ZVALS(I,J+1,N)-ZVALS(I,J,N))
      MAP2=ZL+XFRAC*(ZR-ZL)
      RETURN
  500 CALL MOOR (N, XIN, YIN)
      RETURN
      END
      SCALED FRACTION FUNCTION MAP2L(N)
      SCALED FRACTION MAP2, MAP2L, XIN, YIN
C....XIN AND YIN ARE DUMMY ARGUMENTS AND DO NOT AFFECT RESULT.
```

MAP2L=NAP2(N,XIN,YIN)

RETURN END

```
SUBROUTINE MOOR(M,XIM,YIM)

SCALED FRACTION XIM,YIM

C....TEST FOR OPEPATE MODE

CALL GRAMI(ILOC)

IF(ILOC.FG.4) CALL OSH(IEPR)

TYPE 600,N,XIM,YIM

600 FORMAT(/7HMAP MO.,I3,20H INPUTS OUT OF RANGE/6HXIM = ,S7,

1 SH YIM = ,S7/)

PAUSE

IF(ILOC.EG.4) CALL QSOP(IFRR)

RETURN

END
```

Assembly Language Listing

```
PPPP1:
ØFFF2:
00003:
@ @ @ @ @ 4 :
99995:
PAPPE:
88887:
                                                 MAPS
                                       COWMON
gaaaa:
                               XVALS
                                       RSS
                                                 DQ ?
                     P 9 7 4 P
gagao:
                                YVALS
                                       355
                                                 42
                      PPREP
geale:
                                                 069
                      P1788
                                ZVALS
                                       BSS
ggall:
                                       955
                                                 6
                      PAPPS
                                ĬΧ
99912:
                                                 6
                      PPPPF
                                JY
                                       BSS
98813:
                                       BSS
                                                 6
89914:
                      PAPAS
                                MX
                                       BSS
                                                 6
                                NY
###15:
                      BEEBE
                                       BSS
                                                 6
                               KX
                      PPPP6
PAPIS:
                                       355
                                                 6
                      PREPE
                                KV
99917:
99918: 9999A
                      ABBBBB
                                       REL
                                                 MAP2, MAP2L
                                        NAME
papio:
                                       EXTERN
                                                 MOOR
88828:
                          * COMPLETE FUNCTION GENERATION ENTRY POINT
PPP21:
                                                 C
рая22: парра напра врада
                                        ADR
                                MAP2
                                                             SET UP RETURN
88823: PPAPI
              53777 99999
                                       LX.
                                                 *-1
                                        ICX
              22004 00004
AAA24: 888A2
                                                  Δ
                                                 RETURN
QAA25: AAAA3 51361 AA364
                                        STX
                                                            MAP NO. ADP
94926: PAPPA 141774 PAPPA
                                       LA
                                                 ★- △
                                                             SET IND. BIT
                                       SSM
99927: 98995 2644P
                                                 TEM 1
99928: 99995 161334 99342
                                       STA
                                                  TEM!
00029: 00007
              57333 00342
                                       LX,I
99839: 99919 51334 79344
                                        STX
                                                  TEM I
                                        AOM
00031: 00011
              71331 00342
PPP32: PPP12 145339 PP342
                                                  TEM I
                                       LA,I
MMM33: MMM13 161332 M3345
                                                  XIM
                                        STA
99934: 69914 71326 69342
                                                  TEM!
                                        A OM
                                       LA,I
99935: 99915 145335 PP342
                                                  TEM 1
00036: 00016 161330 00345
                                                  YIN
                                        STA
                          * SET MAPI CONSTANTS AND YVALS ADDRESS (X=M)
00037:
```

```
88838: 88817 1024XX 827A7
                                       LA,X
                                                 YY-1
PPP39: PPP27 161333 09353
                                                 YOMT
                                       STA
PARAP: PAREL 14277X P2755
                                                 XY-1
                                       LA,X
88841: 88822 161332 88354
                                       STA
                                                 YOMT
###42: ###23 142XXX #2741
                                                 MY-1
                                       LA.X
                                                            CURVESIMAP
99943: 99924 161323 99347
                                       STA
                                                 MYC
                                                            MYC=MY(M)
PPP44: PPP25 142XXX 42733
                                       LA.Y
                                                 NY-1
                                                            POINTS/CURVE
99945: 9992K 1K1322 99359
                                       STA
                                                 MYP
                                                            MXP=MX(M)
88846: 88827 142XXX 82717
                                       LA,X
                                                 17-1
00047: 00030 161301 00351
                                       STA
                                                 I
                                                            IOLD=IX(M)
00048: 00031 142XXX 02725
                                       LA,X
                                                 JY-1
                                                            ACCUM= JOLD
PPP40: PPP32
               22777 88881
                                       DCX
                                                 1
                                                            X= N-1
PP 05 0: 0 0 0 3 3
               26500
                                       EX:
                                                            A=M-1. X=JOLD
99951: 99934
               31399 99334
                                       М
                                                 MAYNOV
PPR50: 00035
               26544
                                       E Q
AAA53: PPA36 161303 PA341
                                       STA
                                                 DEL
                                                            =MAXNCV*(M-1)
PPR54: PPR37 151273 PP332
                                       A
                                                 YV
                     88342
PPP55: PPP49 161372
                                       STA
                                                 TEMI
                                                            = A . N
PPP56:
                            DETERMINE
                                       Y INTERVAL (X=J=JOLD)
99957: 99941 141305 99346
                               LOOPI
                                       LA
                                                 YIN
00058: 00042 177300 00342
                                       S,IX
                                                 TEM I
                                                            Y(J,N)
99950: 99943
               27412
                                       SM7
                                                            ACC=YI
88868: 8884A
               41912 99956
                                       J
                                                 LOOP2
PPPSI: PPP45
               27482
                                       SM
               41055 00123
PPP52: PPP45
                                       J
                                                            ACC= 9
                                                 STYING
PPP63: PPP47
               2650 A
                                       EX
                                                            ACC=J
88864: 88858 121267 88337
                                       C
                                                 ONE
PPPRS: PPPS1
               27402
                                       SG
88866: 88852
               41024 00076
                                       J
                                                 Y2SML
00067: 00053
               26599
                                       EX
                                                            X=J
999KR: 99954
               22777 90001
                                       DOX
                                                 1
                                                            X= J= J-1
PARSO: PRASS
               41764 44441
                                       J
                                                 LOOP1
88878: 88856 161265 88343
                               LOOP2
                                       STA
                                                 TEM2
                                                            =Y1
PPA71: PAP57
               22001 00001
                                       ICY
                                                            X = J + 1
99972: 20969 141256 29345
                                                 YIN
                                       LA
88873: 88881 177281 88342
                                       S,IX
                                                 TEM!
                                                            (M. I+L)Y
88874: 88862
               27414
                                       SP7
                                                            ACC=Y2
PPP75: PPA63
               41939 99113
                                       J
                                                 CALCI
PPRTE: PROCA
               27484
                                       SP
99977: 929K5
               A1887 8887A
                                       J
                                                 YEQJ!
PPP7R: PPPER
               26500
                                       EX
                                                            ACC= J+1
PPP79: PPP67 121269 PP347
                                       C
                                                 MYC
APARA: PPATA
              27424
                                       SL
99991: 99971
               41919 00101
                                       J
                                                 Y2BIG
AAA82: AAA72
               26500
                                       EX
                                                            X = J = J + 1
99093: 99973
               41763 00056
                                       j
                                                 1.00P2
                                                            ACC=Y2
PPARA: PAA74 141244 40340
                               YEQJI
                                       LA
                                                 MAXING
                                                            = *77777
99985: 99975
              41 P25 PP122
                                       J
                                                 SETJ
PPARK: APATE
              26500
                               YSSML
                                       FX
                                                            X=J
              25749
00007: 00077
                                       CLR
ppagge palat
              41994 99194
                                       J
                                                 TYCMT
geago: pelal
              25500
                               Y2BIG
                                       EX
                                                            X= J+1
appob: bulas
              22777 20201
                                       DCX
                                                 1
                                                            X=J
0PA91: PAIR3 141235 98348
                                                 MAXINC
                                       LA
                                                            = * 77777
PARSS: ARIBA 161251 AR355
                               TYCNT
                                       STA
                                                 YIMCR
PPP93: PPIP5 141247 20354
                                       LA
                                                 YOMT
PPP04: PPIPS 12123P 99336
                                       C
                                                 MAXCNT
PAROS: APIAT 274AA
                                       SL
```

```
ARART
              41164 44274
                                       J
PAROK: PATTA
                                       A OM
                                                YCMT
              71243 49354
99907: 99111
                                       J
                                                STORU
AAAOR: AC112
              41914 99126
                                              (X=J+1, ACC=Y2)
                                      YIMCR
                          * CALCULATE
PAROO:
                                      TCA
                                                            ACC=-Y2
                               CALCI
88188: 98113 28188
                                                TEMS
                                                            Y1
MMIMI: 00114 151227 00343
                                       Α
                                       STA
                                                TEM I
                                                           =YI-Y2
PRIP2: PP115 161225 PP342
                                      CLR
              25748
00103: 00116
              26549
                                      E6
99194: 99117
                                                TEM2
API 95: ABIRA 141223 09343
                                       LA
              11221 60342
                                                TEM 1
00106: 00121
                                       D
                                                            X = J
00107: 00122
              22777 99991
                               SETJ
                                       DCX
AA1AR: AA123 161232 88355
                                                YINCR
                               STYIMC
                                      STA
                                       CLR
              26748
88189: PP124
                                                            CLEAR COUNT
MAILA: MAI25 161227 MA354
                                       STA
                                                 YCMT
00111: 00126 51224 00352
                               STORJ
                                      SIX
                                                 J
                         * SET UP XVALS AND ZVALS ADDRESSES
PP112:
               22777 APAA1
                                       DCX
                                                 1
                                                            X= J-1
99113: 99127
              26500
                                       EX
PP114: PP13P
                                                 DEL
PP115: PP131 151218 PP341
                                       Δ
                                                 MAXMPT
              312P3 PP335
                                       M
88116: 88132
                                       E0
99117: 00133 2654ª
                                       STA
                                                 TEM 1
                                                            = J. N
88118: 88134 161286 88342
                                                 χV
00119: 00135 151174 00331
                                       Δ
                                       STA
                                                            =X(\emptyset,J,N)
AP124: AP136 161222 PF368
                                                 YIJN
                                                 MAXMPT
AA121: AA137 151176 AA335
                                       Δ
                                                            =X(\emptyset,J+1,M)
                                       STA
                                                 MILIX
PP122: PP148 161221 PP361
                                                 TEMI
                                                            = J.N
99123: 99141 141291 99342
                                       LA
                                                 7 V
00124: 00142 151171 00333
                                       Α
                                                            =Z(\emptyset,J,N)
                                                 ZIJM
@@125: @@143 161217 @@362
                                       STA
                                                 MAXMPT
MAI26: MP144 151171 MP335
                                       Δ
                                                            =Z(P,J+1,N)
MM127: MM145 161216 MM363
                                       STA
                                                 ZIJIM
00128: 00146 53203 00351
                                       LX
                          * DETERMINE X INTERVAL (X=I=IOLD)
64150:
                                                            X(I,J+1,N)
00130: 00147 147212 00361
                               L00P3
                                       LA,IX
                                                 MILIX
                                                            (M, L, I)X
99131: 99150 177210 99360
                                                 MLIX
                                       S,IX
                                                 YINCR
              31204 00355
00132: 00151
                                                            ACC=XLO
                                                 XIJN
                                       A, IX
@@133: @@152 157296 @@360
                                       C
                                                 XIN
PA134: PA153 121172 PA345
                                       SGE
               27412
00135: 00154
                                                 L00P4
               41912 89167
                                       j
09136: 00155
                                       SG
               27412
88137: 88156
                                                 XLORH
                                                            X = I
                                       J
8813R: 88157
               41031 90210
                                                            ACC= I
                                       EX
99139: 99169
               26599
                                                 ONE
                                       C
PA140: MAIGI 121156 MA337
                                       SG
@@141: @@152
               27482
                                                 X2SML
               41939 99213
                                        J
88142: 88163
                                                            X = I
                                       EX
00143: 00164
               26599
                                                            X= I= I-1
               22777 00001
                                       DCX
                                                 1
00144: 00165
                                                 LOOP3
99145: PAIRE
                                        J
               41761 00147
PRIAS: 00167 161167 00356
                                1.00P4
                                       STA
                                                 XLO
                                                            X=I+1
              22991 99991
                                        ICY
                                                 1
88147: 88178
                                                 MILIX
                                                            X(I+1,J+1,M)
$$149: $$171 14717$ $$361
                                       LA, IX
                                                            X(I+1,J,N)
                                                 YIJN
Pa140: Pa172 177166 PA36P
                                       S.IX
                                                 YIMCR
00150: 00173
              31162 00355
                                       M
99151: 99174 157164 99369
                                                 MLIX
                                                            ACC=XHI
                                        A, IX
                                                 XIN
                                       C
00152: 00175 121150 00345
                                        SLE
0P153: PP176 27414
```

```
P0154: 44177
               41031 00230
                                                  CALC2
 00155: 0020a
               27424
                                        SL
 88156: 08241
               41997 99219
                                        J
                                                  XLORH
                                                             X=I=I+1
@#157: @#2#2
               265 AA
                                        EX
                                                             ACC=I+1
99159: 99293 121145 99359
                                        C
                                                  MXP
99150: 99394
               27404
                                        SL
PP160: 00205
               41311 88216
                                        .1
                                                  XZBIG
PAIGI: AASAK
               26599
                                        FX
                                                             X = I = I + 1
88162: P8287
               41768 88167
                                        j
                                                  LOOPA
                                                             ACC=YHT
88163:
                          * XIN=YLO (X=I) OR XIN=XHI (Y=I=I+1)
AA164: AB214
               26744
                                XLORH
                                       CLR
PP165: PP211 161146 PP357
                                        STA
                                                  XFRAC
99165: 99212
               41931 PP243
                                        J
                                                  RANDP
MA167: MA213
               26500
                                X2SML
                                        FX
                                                            X = I
PP168: 00214
               26740
                                        CLR
AP160: 88215
               41994 99221
                                        J
                                                  TXCMI
99179: 99216
               26599
                                X2B IG
                                        EX
                                                            Y = I + 1
99171: 99217
              22777 99991
                                        DCX
                                                  1
                                                            X=I
89172: 99229 141129 99349
                                       LA
                                                 MAXINC
                                                            = *77777
MAI73: 00221 161136 00357
                                TXCYT
                                        STA
                                                 XFRAC
0P174: PP222 141131 PP353
                                       LA
                                                 XCNT
PP175: PP223 121113 PP336
                                       C
                                                 MAXCHI
88175: P8224
               27484
                                       SL
PP177: 09225
               41747 99274
                                        J
                                                 ABORT
88179: 88226
               71125 00353
                                        AOM
                                                 XCMT
00179: 00227
               41 P14 P3243
                                        J
                                                 RANDR
GPIRG:
                          * CALCULATE
                                       XFPAC
                                               (X=I+1, ACC=XHI)
MAIRI: MM234 171126 MM356
                                CALC?
                                       C
                                                 XLO
00192: 00231 161111 00342
                                       STA
                                                 TEM I
                                                            =XHI-XLO
AA183: A8232
               25749
                                       CLP
10194: 01033
              26540
                                       ΕQ
00185: 00234 141111 00345
                                       LA
                                                 XIN
88186: 88235 171121 88356
                                       S
                                                 XLO
PP187: 89236
              11104 00342
                                       D
                                                 TFM I
BAIRS: 00237 161120 00357
                                       STA
                                                 XFRAC
PP180: 00240
               22777 99991
                                       DCX
                                                            X=I
              25748
00190: 00241
                                       CLP
AMIO1: MM242 161111 MM353
                                       STA
                                                 XCMT
                                                            CLEAR COUNT
99192:
                          * SET UP REENTRY COMPITIONS
                                                          (X=I)
AA103: AA243
               51106 00351
                               RANDR
                                       STY
                                                 I
               26500
90104: 9024A
                                       EX
                                                            ACCUM = I
PP195: PP245
               53077 00344
                                       LX
                                                 M
                                                            X=MAP NO.
00196: 00246 162XXX 02717
                                       STA,X
                                                 IX-1
                                                            I = (M) \times I
MM197: MM247 1411M3 MM352
                                       LA
                                                 J
##199: ##25# 162xxx #2725
                                       STA,X
                                                 JY-1
                                                            JY(N)=J
00199: 00251 141102 00353
                                       LA
                                                 XCNT
PP200: 00252 162XXX 02747
                                       STA,X
                                                 KX-1
                                                            KX(M)=XCMT
00201: 00253 141101 00354
                                       LA
                                                 YC NT
88882: 88254 162XXX 82755
                                       STA,X
                                                 KY-1
                                                            KY (N) = YCNT
FA2A3: AA255
               53074 00351
                                       LX
99294:
                          * CALCULATE
                                      FUNCTION OUTPUT
                                                          (Y=I)
PP2P5: PP256 1471P5 PP363
                               INTRP
                                       LA.IX
                                                 ZIJIN
                                                            7(I,J+1,M)
PB286: 40257 177103 00362
                                       S.IX
                                                 ZIJM
                                                            7(I,J,M)
PP2P7: PP25P
              31075 00355
                                       М
                                                 YINCP
PAZAR: PAZEL 1571AL PAZEZ
                                       A, IX
                                                 ZIJM
PP2P9: 00262 161060 00342
                                       STA
                                                 TEM !
                                                            = 7L
PP21P: 99263
             22001 00001
                                       ICX
                                                 1
                                                            Y= [+1
$$211: $$264 147577 35363
                                       LA, IY
                                                 MILIS
                                                            7(I+1,J+1,N)
```

```
7(I+1.J.M)
 ##212: ##265 177#75 ##362
                                                  ZIJM
                                        S.IX
               31967 00355
                                                  YINCR
 88213: 88256
                                                             = 7 P
               157073 00362
                                        A, IX
                                                  ZIJN
 PP214: 9P257
                                                  TEM 1
                                                             = 7P - 7L
 90215: 00270 171052 00342
                                        5
                31088 00357
                                                  XFRAC
 MM216: 00271
                                                  TEMI
                                                             MAP OUTPUT
 99217: 98272 151858 88342
                                        Δ
                                                  RETURN
                45071 00364
                                        J.I
 99218: 99273
                           * MAP OUT OF RANGE
 99219:
                                                  MOOR
                KRXXX
                                ABORT
 98228: 88274
                                        ADR
                YYXXX 00344
 00221: 00275
                                        ADR
                                                  XIN
 PA222: PA276
                XXXXX PP345
                                                  YIN
 PP223: PP277
                XXXXX PP346
                                        ADR
                                        ADR
 88224: 8838B
                acada baada
                                                  RETURM
                                                             OUTPUT=?
                45863 88364
                                        J.I
 00225: 00301
                           * FUNCTION LOOKUP ONLY ENTRY POINT
 PP225:
                           * SET UP OUTPUT TABLE ADDRESSES
 PP227:
                <u>ववववव ववववव</u>
                                MAPSL
                                        ADR
 PA228: PA3A2
                                                             SET UP RETURM
 88220: 88383
                53777 00302
                                        LX
                                                  *-1
                                        ICX
 AP239: PA304
                SSaal bagai
                                                  1
                                                  RETURN
               51057 00364
                                        STY
 PP231: PP3P5
                                                             MAP NO. ADR
                                        LA
                                                  *-1
 PA232: PA396 141774 PA392
                                        SSN
                                                             SET IND. BIT
 00233: 00307
               25448
                                                  TEM!
 PP234: PP31 P 161 P32 PP342
                                        STA
                                                             ACCUM= N
 0P235: PP311 145P31 PP342
                                                  TEM 1
                                        LA,I
                                                  ONE
                                                             ACC=M-I
 PP236: PP312 171 P25 PP337
                                        5
                                        M
                                                  MAXNOV
 09237: 99313
               31921 99334
                                        ΕÛ
               26544
 88238: 88314
 MA239: MA315 161424 MA341
                                                  DEL
                                        STA
                                        LA
                                                  J
 8F24F: FF316 141F34 FF352
                                        S
                                                  ONE
                                                             ACC=J-1
 PP241: PP317 171920 00337
                                                  DEL.
 MM242: MM32M 151M21 MM341
                                        Α
                                                  MAYNPT
                                        M
                31014 80335
 88243: 88321
                                        EQ
                                                             ACC=J.N
                25549
 0F244: 0F322
                                                  7 V
 00245: 00323 151010 00333
                                        Δ
                                                             =Z(0,J,N)
                                        STA
                                                  ZIJN
 AP246: PP324 161936 PP362
                                                  MAYNPT
 99247: 99325 151919 99335
                                        Α
                                                             =7(P.J+1.N)
                                        STA
                                                  ZIJIM
 9924R: 99326 161935 99363
                53022 00351
 00249: 00327
                                        LX
                                                  INTRP
                                        J
 99259: 99339
                41726 88256
                           * COMMON REFERENCES
 99251:
                                 χV
                                                  XVALS-1
R # #252: ##331
                XXXXX 11111
                                        ADR
                                 YV
                                                  YVALS-1
                                         ADR
 PP253: PP332
                XXXXX @@737
                                                  ZVALS-1
                XXXXX 01017
                                         ADR
 PP254: PP333
                                 ZV
                                 MAXNOV DEC
 BB255: BB334
                apala
                                                  10
                                 MAXNPT DEC
 @P256: @P335
                99912
 99257: 9933K
                70031
                                 MAXCNT DEC
                                                  25
 99258: 99337
                ppaal
                                 ONE
                                         OCT
                                                  1
                                                  77777
                                 MAXINC
                                        OCT
 99250: 9934B
                77777
                      99999
 99269: 99341
                ааааа
                                 DEL
                                        BSS
                                                   1.0
                                                  1,5
 P9261: 99342
                апрра опрра
                                 TEM I
                                        BSS
 PP262: PP343
                       ABBBB
                                 TEM2
                                        BSS
                30909
                                        BSS
                                                  1,0
 00263: 00344
                gaaga
                       gaaga
                                 M
 88264: 88345
                адара дарар
                                 XIN
                                        BSS
                                        BSS
                                                  1,6
 90265: 90345
                gaaga gaaaa
                                 YIN
                                        BSS
                                                  1,9
                аваав вавав
                                 NYC
 ##266: ##347
                                        BSS
                                                  1,8
 P8267: P8358
                вреев верре
                                 MYP
                                         355
                                                  1,0
 90269: 00351
                авера авера
                                 T
                eages sages
                                 J
                                         988
 PP260: 00352
```

00270:	PP353	ррпрп	aaaaa	XCNT	988	1.0
00271:	00354	gagag	рарра	YCMT	BSS	1,0
99272:	00355	рарар	рарар	YINCR	BSS	1.0
PP273:	Ø Ø 35 K	раппр	BBBBB	χLO	355	1,0
F 9274:	19357	agaaa	aaaaa	YFRAC	BSS	i a
PP275:	99360	aaaba	enean	MLIX	BSS	i p
PP276:	983KI	angea	ପ୍ରନ୍ତ୍ର	XIJIN	BSS	1.0
99277:	P 2362	annaa	geggg	ZIJM	BSS	1.0
0 f2 7×:	P3363	esses	парар	ZIJIN	BSS	1.0
PP279:	99364	peage	рарар	RETURM	BSS	1.0
60560:			00000	•	END	Ø

APPENDIX E

ANALOG PROGRAM - PATCHING DIAGRAMS, POTENTIOMETER SETTINGS,

AND SCALE FACTORS

The bulk of the calculations in the real-time TF30-P-3 simulation are performed on one EAI 680 Analog Computer and two EAI 231-R Analog Computers. Figures 18 to 20 contain the analog patching diagrams for those computers.

Table XIV contains a list of potentiometer definitions and settings for the analog portion of the simulation. Table XV contains a list of scale factors for the analog variables.

The EAI 680 Analog Computer has a complement of 24 quarter-square multipliers. This complement can effectively be increased by six by using the DAM feature. Digitally generated variables may be multiplied, on the 680, by analog variables with the product available at the analog. Table XVI lists the DAM variables in the TF30-P-3 hybrid simulation. Figure 18 illustrates the role of the DAM's in the TF30-P-3 simulation.

REFERENCES

- 1. Bentz, Charles E.; and Zeller, John R.: Integrated Propulsion Control System Program. Paper 730359, SAE, Apr. 1973.
- 2. McKinney, John S.: Simulation of Turbofan Engine. Part I: Description of Method and Balancing Technique. AFAPL-TR-67-125, Air Force Aeropropulsion Lab., Air Force Systems Command (AD-825197), 1967.
- 3. McKinney, John S.: Simulation of Turbofan Engine, Part II: User's Manual and Computer Program Listing. AFAPL-TR-67-125, Air Force Aeropropulsion Lab., Air Force Systems Command, 1967.
- 4. Koenig, Robert W.; and Fishbach, Laurence H.: GENENG Program for Calculating Design Performance for Turbojet and Turbofan Engines. NASA TN D-6552, 1972.
- 5. Fishbach, Laurence H.; and Koenig, Robert W.: GENENG II A Program for Calculating Design and Off-Design Performance of Two- and Three-Spool Turbofans with as many as Three Nozzles. NASA TN D-6553, 1972.
- 6. Seldner, Kurt; Mihaloew, James R.; and Blaha, Ronald J.: Generalized Simulation Technique for Turbojet Engine System Analysis. NASA TN D-6610, 1972.
- 7. Szuch, John R.: HYDES, A Generalized Hybrid Computer Program for Studying Turbojet or Turbofan Engine Dynamics. NASA TM X-3012, 1974.
- 8. Szuch, John R.: Analysis of Integral Lift-Fan Engine Dynamics. NASA TM X-2691, 1973.
- 9. Arpasi, Dale J.; Cwynar, David S.; and Wallhagen, Robert E.: Sea-Level Evaluation of Digitally Implemented Turbojet Engine Control Functions. NASA TN D-6936, 1972.
- 10. Arpasi, Dale J.; Zeller, John R.; and Batterton, Peter G.: A General Purpose Digital System for On-Line Control of Airbreathing Propulsion Systems. NASA TM X-2168, 1971.
- 11. Shapiro, Ascher H.: The Dynamics and Thermodynamics of Compressible Fluid Flow. Vol. I., Ronald Press Co., 1953.
- 12. Cwynar, David S.; and Batterton, Peter G.: Digital Implementation of the TF30-P-3 Turbofan Engine Control. NASA TM X-3105, 1974.
- 13. Hart, Clint E.: Function Generation Subprograms for use in Digital Simulations. NASA TM X-71526, 1974.

TABLE I. - TELETYPE OUTPUT LISTINGS FOR SEA-LEVEL,

STANDARD-DAY, STATIC OPERATING LINE -

CLOSED-LOOP CONTROL

(a) Power lever angle, 150

PB	Ξ	10.132	N/SQ CM	(14.695	PSIA)
						: - -
T #	=	288.14	K	(518.66	R)
M 6	Ξ	.0000				
P2	Ξ	10.132	N/SQ CM	(14.695	PSIA)
	=			è	518.66	R)
T2		288.14	K_	,	710.00	η ,
PLA	Ξ	15.06	DE G			
WF4	Ī	.1260	K G/SEC	(.2779	LBM/SEC)
WF7	=	. # #23	KG/SEC	(.0051	LBM/SEC)
				ì	-	LBM/SEC)
WF17	=	.0066	K G / SEC	(.#146	LBM/SEC)
XBL7	Ξ	.00109				
XBL12	Ξ	.68683				
AN	=	.65410	SQ M	(1013.8	SQ IN)
				`	1010.0	24 111 7
XNH	Ξ	997#.	RPM			
XNL	=	3962.	RPM			
PS22	=	12.915	N/SQ CM	(18.731	PSIA)
		32.11	N/SQ CM	Ò	46.58	PSIA)
PS3	Ξ					
WA2	=	48.52	KG/SEC	(88.24	LBM/SEC)
T22	Ξ	322.56	ĸ	(580.62	R)
T3	=	425.2	ĸ	Ċ	765.3	R)
						R Ś
T4	Ξ	755.2	К	(1359.3	
T 6	=	606.1	K	(1491.6	R)
WAR22M	=	10.865	KG/SEC	(23.823	LBM/SEC)
			KG/ BEG	`	20 \$ 00.0	
P3Q22	Ξ	2.3632				
			(b) Power lever angle			DCTA)
PØ	=	10.132	N/SQ CM	(14.695	PSIA)
PØ	=	10.132	N/SQ CM			PSIA) R)
T Ø	=	288.14		(14.695	
T 0 M 0	=	288.14	N/SQ CM	(14.695 518.66	R)
T Ø	=	288.14 .0000 18.132	N/SQ CM K N/SQ CM	(14.695 518.66 14.695	R) PSIA)
T 0 M 0 P2	=	288.14 .0000 18.132	N/SQ CM K N/SQ CM K	(14.695 518.66	R)
T 0 M 0 P2 T2	: :	288.14 .0000 10.132 288.14	N/SQ CM K N/SQ CM	(14.695 518.66 14.695 518.66	R) PSIA) R)
T 0 M 0 P2 T2 PLA		288.14 . # # # # # 1 # . 132 288.14 69.98	N/SQ CM K N/SQ CM K DEG	(14.695 518.66 14.695 518.66	R) PSIA)
T 0 M 0 P2 T2 PLA WF4		288.14 .#### 18.132 288.14 69.98 .8421	N/SQ CM K N/SQ CM K Deg Kg/sec	(((14.695 518.66 14.695 518.66	R) PSIA) R)
T 0 M 0 P2 T2 PLA		288.14 .#### 18.132 288.14 69.98 .8421 .5737	N/SQ CM K N/SQ CM K Deg Kg/Sec Kg/Sec		14.695 518.66 14.695 518.66 1.8566 1.2648	R) PSIA) R) LBM/SEC) LBM/SEC)
T 0 M 0 P2 T2 PLA WF4 WF7		288.14 .#### 18.132 288.14 69.98 .8421	N/SQ CM K N/SQ CM K Deg Kg/sec	(((14.695 518.66 14.695 518.66	R) PSIA) R) LBM/SEC)
T 0 M 0 P2 T2 PLA WF4 WF7 WF17		288.14 .#### 18.132 288.14 69.98 .8421 .5737 .##13	N/SQ CM K N/SQ CM K Deg Kg/Sec Kg/Sec		14.695 518.66 14.695 518.66 1.8566 1.2648	R) PSIA) R) LBM/SEC) LBM/SEC)
T 0 M 0 P2 T2 PLA WF4 WF7 WF17 XBL7		288.14 .#### 18.132 288.14 69.98 .8421 .5737 .###5	N/SQ CM K N/SQ CM K Deg Kg/Sec Kg/Sec		14.695 518.66 14.695 518.66 1.8566 1.2648	R) PSIA) R) LBM/SEC) LBM/SEC)
T0 M0 P2 T2 PLA WF4 WF7 WF17 XBL7 XBL12		288.14 .#### 18.132 288.14 69.98 .8421 .5737 .#### .#### .#####	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC	((((((((((((((((((((14.695 518.66 14.695 518.66 1.8566 1.2648 .8829	R) PSIA) R) LBM/SEC) LBM/SEC)
T 0 M 0 P2 T2 PLA WF4 WF7 WF17 XBL7		288.14 	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC		14.695 518.66 14.695 518.66 1.8566 1.2648	R) PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC)
T0 M0 P2 T2 PLA WF4 WF7 WF17 XBL7 XBL12		288.14 .#### 18.132 288.14 69.98 .8421 .5737 .#### .#### .#####	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC	((((((((((((((((((((14.695 518.66 14.695 518.66 1.8566 1.2648 .8829	R) PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC)
T0 M0 P2 T2 PLA WF4 WF7 WF17 XBL7 XBL12 AN		288.14 .#### 18.1314 69.421 .57313 .#### .##### .######################	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC	((((((((((((((((((((14.695 518.66 14.695 518.66 1.8566 1.2648 .8829	R) PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN)
T0 M8 P2 T2 PLA WF4 WF7 WF17 XBL7 XBL12 AN XNH		288.14 	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC	((((((((((((((((((((14.695 518.66 14.695 518.66 1.8566 1.2648 .8829	R) PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN) PSIA)
T0 M0 P2 T2 PLA WF7 WF17 XBL7 XBL12 AN XNH XNH PS22		288.14 	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC SQ M RPM RPM RPM N/SQ CM		14.695 518.66 14.695 518.66 1.8566 1.2648 .8829 592.1	R) PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN)
T0 M0 P2 T2 PLA WF7 WF17 XBL7 XBL12 AN XNH XNL PS22 PS3		288.14 .0000 18.132 288.14 69.98 .8421 .5737 .0013 .0000 .00	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC SQ M RPM RPM N/SQ CM N/SQ CM		14.695 518.66 14.695 518.66 1.8566 1.2648 .8829 592.1	R) PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN) PSIA) PSIA)
T0 M0 P2 T2 PLA WF7 WF17 XBL7 XBL12 AN XNH XNH PS22		288.14 	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC SQ M RPM RPM RPM N/SQ CM KG/SEC		14.695 518.66 14.695 518.66 1.8566 1.2648 .8629 592.1	R) PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN) PSIA) PSIA) LBM/SEC)
T0 M0 P2 T2 PLA WF7 WF17 XBL7 XBL12 AN XNH XNL PS22 PS3 WA2		288.14 	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC SQ M RPM RPM N/SQ CM N/SQ CM		14.695 518.66 14.695 518.66 1.8566 1.2648 .8629 592.1 77.858 234.88 236.38 988.75	R) PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN) PSIA) PSIA) LBM/SEC) R)
T 0 M 0 P2 T2 PLA WF4 WF7 WF1 7 XBL 7 XBL 12 AN XNL PS2 PS3 WA2 T22		288.14 .fffff 1f.134 69.22 88.18 .9421 .577 .fffff .fffff .ffffff	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC SQ M RPM RPM RPM N/SQ CM KG/SEC K		14.695 518.66 14.695 518.66 1.8566 1.2648 .8629 592.1	R) PSIA) LBM/SEC) LBM/SEC) SQ IN) PSIA) PSIA) PSIA) LBM/SEC) R)
T0 M0 P2 T2 PLA WF7 WF17 XBL7 XNL7 XNL7 XNL PS3 WA2 T3		288.14 .#### 18.134 69.421 .57113 .#### .48437 .##### .##### .##### .48431 .##### .48431 .##### .48431 .##### .48431 .##### .48431 .##### .48431 .##### .48431 .##### .48431 .##### .48431 .##### .48431 .##### .48431 .48431 .48	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC SQ M RPM RPM RPM N/SQ CM KG/SEC		14.695 518.66 14.695 518.66 1.8566 1.2648 .8829 592.1 77.858 234.88 236.38 988.75 1251.7	R) PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN) PSIA) PSIA) LBM/SEC) R)
T 0 M 0 P2 T2 PLA WF4 WF7 WF1 7 XBL 7 XBL 12 AN XNL PS2 PS3 WA2 T22		288.14 .#### 18.134 69.421 .5713 .#### .5713 .##### .48437 .##### .48436 .4845 .483124 .53124 .144.8 .5445 .485 .485 .545 .485 .576.8	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC SQ M RPM RPM RPM N/SQ CM KG/SEC K		14.695 518.66 14.695 518.66 1.8566 1.2648 .8829 592.1 77.858 234.88 236.36 988.75 1251.7 2296.8	R) PSIA) LBM/SEC) LBM/SEC) SQ IN) PSIA) PSIA) PSIA) LBM/SEC) R) R)
T0 M8 P2 T2 PLA WF7 WF17 XBL7 XBL12 ANH XNL PS22 PS3 WA2 T22 T3 T4		288.14 .#### 18.134 69.421 .57113 .#### .48437 .##### .##### .##### .48431 .##### .48431 .##### .48431 .##### .48431 .##### .48431 .##### .48431 .##### .48431 .##### .48431 .##### .48431 .##### .48431 .##### .48431 .48431 .48	N/SQ CM K N/SQ CM K DEG KG/SEC KK KK KK		14.695 518.66 14.695 518.66 1.8566 1.2648 .8629 592.1 77.858 234.88 236.38 988.75 1251.7 2296.8 1453.1	PSIA) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN) PSIA) PSIA) LBM/SEC) R) R) R)
T0 M8 P2 T2 PLA WF7 WF17 XBL12 AN XNL PS3 WA2 T22 T3 T4 T6		288.148 .000 18.1324 698.4333 .000 18.1324 698.4333 .000 18.1334 .000	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC SQ M RPM RPM RPM N/SQ CM KG/SEC K		14.695 518.66 14.695 518.66 1.8566 1.2648 .8829 592.1 77.858 234.88 236.36 988.75 1251.7 2296.8	R) PSIA) LBM/SEC) LBM/SEC) SQ IN) PSIA) PSIA) PSIA) LBM/SEC) R) R)
T0 M0 P2 T2 PLA WF7 WF17 XBL12 AN XNH XNL PS22 PS3 WA2 T22 T3 T4 T6 WAR 22		288.14 .#### 18.1324 69.421 .5713 .#### .8437 .#### .##### .##### .38242 .33.123 .444.55 .31244 .33.123 .444.55 .276.2 .22.819	N/SQ CM K N/SQ CM K DEG KG/SEC KK KK KK		14.695 518.66 14.695 518.66 1.8566 1.2648 .8629 592.1 77.858 234.88 236.38 988.75 1251.7 2296.8 1453.1	PSIA) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN) PSIA) PSIA) LBM/SEC) R) R) R)
T0 M8 P2 T2 PLA WF7 WF17 XBL12 AN XNL PS3 WA2 T22 T3 T4 T6		288.14 	N/SQ CM K N/SQ CM K DEG KG/SEC KK KK KK		14.695 518.66 14.695 518.66 1.8566 1.2648 .8629 592.1 77.858 234.88 236.38 988.75 1251.7 2296.8 1453.1	PSIA) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN) PSIA) PSIA) LBM/SEC) R) R) R)

${\bf TABLE\ I.\ -Concluded.\ \ TELETYPE\ OUTPUT\ LISTINGS\ FOR\ SEA-LEVEL.}$

STANDARD-DAY, STATIC OPERATING LINE -

CLOSED-LOOP CONTROL

(c) Power lever angle, 120°

Pβ	Ξ	10.132	N/SQ CM	(14.695	PSTA	,
Ţβ	=	288.14	ĸ	ì	518.66	R	ź
MØ	=	.0000		`	3 • (7 • (10)		1
P2	Ξ	10.132	N/SQ CM	(14.695	PSIA	,
T2	Ξ	288.14	К	(518.66	R	ś
PLA	Ξ	119.95	DEG				_
WF4	=	.R4#3	KG/SEC	(1.8526	LBM/SEC	,
WF7	Ξ	2.1531	KG/SEC	Ċ	4.7468	LBM/SEC	
WF17	Ξ	2.5718	KG/SEC	ì	5.6699	LBM/SEC	-
XBL 7	=	. 99907		`	2.6 0055	CDL. / DL O	,
XBL12	Ξ	. 99936					
AN	Ξ	.65349	50 M	(1012.3	SO IN	١
XNH	Ξ	14842.	RPM	`	1,17,10	.14 11.	,
XNL	=	933R.	R PM				
PS22	Ξ	53.124	N/SQ CM	(77.050	PSIA	,
P.S.3	=	161.19	N/SQ CM	è	233.78	PSTA	í
WA2	Ξ	194.49	KG/SEC	ì	234.36	LBM/SEC	í
122	-	505.16	K	ì	949.34	R	ζ.
7.3	7	711.7	K	ì	1281.2	P	(
T 4	-	1276.A	Ķ	`			,
16					2296.R	B)
	-	811.6	K	(1460.0	P)
WAP 22 M	7	12.823	KG/SEC	(28,271	LAMISEC)
63055		2.9955					

TABLE II. - TELETYPE OUTPUT LISTINGS FOR SIMULATED

6.096-KILOMETER (20 000-FT) ALTITUDE, MACH 1.2

FLIGHT CONDITION - CLOSED-LOOP CONTROL

(a) Power lever angle, 150

PØ	Ξ	4.660	N/SQ CM	,	6 768	DCTA .
				,	6.760	PSIA)
TØ	=	248.64	K	(447.56	R)
M 6	Ξ	1.1999				
P2	Ξ	11.255	N/SQ CM	(16.252	PSIA)
T2	=	328.25	K	(576.45	R)
PLA	=	15.81	DEG	•	2,0012	,, ,
WF4	Ξ	.2478	KG/SEC	- (.5445	LBM/SEC)
WF7	Ξ	.0026	K G/SEC	,	.0058	
					-	LBM/SEC)
WF17	Ξ	.0013	K G/SEC	(.##29	LBM/SEC)
XBL7	=	00012				
XBL 12	Ξ	.00146				
AN	Ξ	.33#51	SQ M	(512.3	SQ IN)
XNH	Ξ	11687.	RPM			
XNL	Ξ	7829.	RPM			
PS22	Ξ	29.453	N/SQ CM	(42.718	PSIA)
PS3	Ξ	69.21	N/SQ CM	(100.39	PSIA)
WAZ	=	76.72	KG/SEC	(169.14	LBM/SEC)
T22	=	439.24	ĸ	Ċ	790.64	R)
T3	Ξ	564.5	ĸ	(1815.3	R Ś
T4	=	983.8	K	Ċ	1625.4	R Ś
T6	Ξ	634.8	ĸ	Ċ	1141.3	Ř Ś
WAR22M	Ξ	11.003	KG/SEC	ì	24.257	LBM/SEC)
P3Q22	=	2.2451		`	- (LD. 17 DLO7

TABLE II. - Concluded. TELETYPE OUTPUT LISTINGS FOR SIMULATED

6.096-KILOMETER (20 000-FT) ALTITUDE, MACH 1.2

FLIGHT CONDITION - CLOSED-LOOP CONTROL

(b) Power lever angle, 70°

P#	=	4.668	N/SQ CM	(6.769	PSIA)
TØ	=	248.64	K	(447.56	R)
M Ø	:	1.1999				
P2	=	11.205	N/SQ CM	(16.252	PSIA)
T2	=	328.25	K	Ċ	576.45	R)
PLA	=	69.98	DEG		-	
WF4	Ξ,	.7981	KG/SEC	(1.7596	LBM/SEC)
WF7	=	.5511	KG/SEC	Ċ	1.2150	LBM/SEC)
WF17	=	0004	KG/SEC	Ċ	0009	LBM/SEC)
XBL7	=	.00097	,, ,, ,, ,,		•	
XBL12	-	.00073				
AN	=	39264	SQ M	(688.5	SQ IN)
XNH	=	14296.	RPM	•	0.00	
XNL	=	9353.	RPM			
PS22	=	53.874	N/SQ CM	(76.977	PSIA)
PS3	=	155.86	N/SQ CM	· `	225.97	PSIA)
			KG/SEC	ì	231.95	LBM/SEC)
WA2	=	105.21	Kayaro	ì	978.82	R)
122	=	539.34	ĸ	ì	1375.0	Ř Ś
T3	=	763.8	K	ì	2369.6	Ř)
T4	=	1316.4	, K	ì	1517.5	Ř Ś
T6	=	843.6	K G/SEC	ì	27.758	LBM/SEC)
WAR22M		12.591	KG/SEC	•	21,170	EB(1) EE 0)
P3Q22	Ξ	2.7886			0	
			(c) Power lever an	gle. 1	. 2 0°	
			(0) 20, 02 22 33	6 , -		
P#	=	4.660	N/SQ CM	(6.760	PSIA)
P# T#	=======================================	4.668 248.64				PSIA) R)
T Ø	=	248.64	N/SQ CM	(6.768 447.56	R)
T 9 M 0		248.64 1.1999	N/SQ CM	(6.760	R) PSIA)
T 0 M 0 P2	:	248.64	N/SQ CM K	(6.768 447.56	R)
T 0 M 0 P2 T2	=	248.64 1.1999 11.285 328.25	N/SQ CM K N/SQ CM	(6.768 447.56 16.252 576.45	R) PSIA) R)
T 0 M 0 P2	= = =	248.64 1.1999 11.2#5	N/SQ CM K N/SQ CM K	(6.768 447.56 16.252 576.45	R) PSIA) R) LBM/SEC)
TØ MØ P2 T2 PLA WF4		248.64 1.1999 11.2#5 32#.25 119.95 .8#11	N/SQ CM K N/SQ CM K Deg	(6.768 447.56 16.252 576.45 1.7662 4.1594	PSIA) R) LBM/SEC) LBM/SEC)
TØ MØ P2 T2 PLA WF4 WF7		248.64 1.1999 11.285 328.25 119.95 .8811 1.8866	N/SQ CM K N/SQ CM K Deg Kg/Sec	(((6.768 447.56 16.252 576.45	R) PSIA) R) LBM/SEC)
TØ MØ P2 T2 PLA WF4 WF7 WF17	** ** ** ** ** ** ** **	248.64 1.1999 11.285 328.25 119.95 .8811 1.8866 2.6294	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC	((((((((((((((((((((6.768 447.56 16.252 576.45 1.7662 4.1594	PSIA) R) LBM/SEC) LBM/SEC)
T0 M0 P2 T2 PLA WF4 WF7 WF17 XBL7	16 11 11 11 11 11 11 11	248.64 1.1999 11.285 328.25 119.95 .8811 1.8866 2.6294 .88134	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC	((((((((((((((((((((6.768 447.56 16.252 576.45 1.7662 4.1594	PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC)
T0 M0 P2 T2 PLA WF4 WF7 WF17 XBL7 XBL12		248.64 1.1999 11.285 328.25 119.95 .8811 1.8866 2.6294 .88134 .88122	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC	((((((((((((((((((((6.768 447.56 16.252 576.45 1.7662 4.1594	PSIA) R) LBM/SEC) LBM/SEC)
T# M# P2 T2 PLA WF4 WF7 WF17 XBL7 XBL7		248.64 1.1999 11.285 328.25 119.95 .8811 1.8866 2.6294 .88134 .88134 .88122	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC	((((((((((((((((((((6.76 # 447.56 16.252 576.45 1.7662 4.1594 5.7968	PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC)
T# M# P2 T2 PLA WF7 WF17 XBL7 XBL12 AN XNH		248.64 1.1999 11.285 328.25 119.95 .8811 1.8866 2.6294 .88134 .88122 .65423 14299.	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC	((((((((((((((((((((6.76 # 447.56 16.252 576.45 1.7662 4.1594 5.7968	PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC)
TØ MØ P2 T2 PLA WF4 WF7 XBL7 XBL7 XBL12 AN XNH XNL		248.64 1.1999 11.285 328.25 119.95 .8811 1.8866 2.6294 .88134 .88122 .65423 14299 .9356.	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC SQ M RPM RPM	((((((((((((((((((((6.768 447.56 16.252 576.45 1.7662 4.1594 5.7968	PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC)
TØ MØ P2 T2 PLA WF4 WF1 XBL7 XBL12 AN XNL PS22	11 11 11 11 11 11 11 11 11 11 11 11 11	248.64 1.1999 11.285 328.25 119.95 .8811 1.8866 2.6294 .88134 .88122 .65423 14299 9356. 53.887	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC SQ M RPM RPM N/SQ CM	((((((((((((((((((((6.76 # 447.56 16.252 576.45 1.7662 4.1594 5.7968	PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN)
T# M## P2 T2 PLA WF4 WF7 XBL7 XBL12 AN XNH XNL PS22 PS3		248.64 1.1999 11.285 328.25 119.95 .8811 1.8866 2.6294 .88134 .88122 .65423 14299 .9356 .53.887 155.73	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC	· · · · · · · · · · · · · · · · · · ·	6.76 # 447.56 16.252 576.45 1.7662 4.1594 5.7968 1814.#	R) PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN) PSIA)
TØ MØ P2 T2 PLA WF7 WF17 XBL17 XBL12 AN XNH XNL PS3 WA2		248.64 1.1999 11.285 328.25 119.95 .8811 1.8866 2.6294 .88134 .81122 .65423 14299 .9356. 53.887 155.73 185.24	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC NG/SEC		6.768 447.56 16.252 576.45 1.7662 4.1594 5.7968 1814.8	R) PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN) PSIA) PSIA)
TØ MØ P2 T2 PLA WF7 WF17 XBL17 XBL12 AN XNH XNL PS3 WA2 T22	11 11 11 11 11 11 11 11 11 11 11 11 11	248.64 1.1999 11.285 328.25 119.95 .8811 1.8866 2.6294 .88122 .65423 14299 .9356. 53.887 155.73 185.24 539.34	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC NOM RPM RPM RPM N/SQ CM N/SQ CM KG/SEC		6.76 # 447.56 16.252 576.45 1.7662 4.1594 5.7968 1814.# 76.995 225.87 232.#2 978.82	PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN) PSIA) PSIA) LBM/SEC)
TØ MØ P2 T2 PLA WF7 WF17 XBL17 XBL12 AN XNH XNL PS22 PS3 WA2 T22 T3		248.64 1.1999 11.285 328.25 119.95 .8811 1.8866 2.6294 .88122 .65423 14299 .9356. 53.887 155.73 185.24 539.34 763.8	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC NG/SEC CM RPM RPM RPM N/SQ CM N/SQ CM KG/SEC		6.76 # 447.56 16.252 576.45 1.7662 4.1594 5.7968 1814.8 76.995 225.87 232.82	PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN) PSIA) PSIA) LRM/SEC) R)
TØ MØ P2 T2 PLA WF7 WF17 XBL17 XBL12 AN XNH XNL PS22 PS3 WA2 T22 T3 T4		248.64 1.1999 11.285 328.25 119.95 .8811 1.8866 2.6294 .88122 .65423 14299 .9356. 53.887 155.73 185.24 539.34 763.8	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC KG/SEC KG/SEC KG/SEC		6.76 # 447.56 16.252 576.45 1.7662 4.1594 5.7968 1814.# 76.995 225.87 232.#2 978.82 1375.#	PSIA) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN) PSIA) PSIA) LBM/SEC) R)
T0 M0 P2 T2 PLA WF7 WF17 XBL17 XBL12 ANH XNL PS22 PS3 WA2 T22 T3 T6		248.64 1.1999 11.285 328.25 119.95 1.8866 2.6294 .8812 .65423 14299 .9356. 53.887 155.73 185.24 539.34 763.8	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC NG/SEC KG/SEC KG/SEC KG/SEC KG/SEC KG/SEC KG/SEC KG/SEC KG/SEC		6.76 # 447.56 16.252 576.45 1.7662 4.1594 5.7968 1814.8 76.995 225.87 232.82 978.82 1375.8 2375.8	PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN) PSIA) PSIA) PSIA) PSIA) PSIA) R) R
TØ MØ P2 T2 PLA WF7 WF17 XBL17 XBL12 AN XNH XNL PS22 PS3 WA2 T22 T3 T4		248.64 1.1999 11.285 328.25 119.95 .8811 1.8866 2.6294 .88122 .65423 14299 .9356. 53.887 155.73 185.24 539.34 763.8	N/SQ CM K N/SQ CM K DEG KG/SEC KG/SEC KG/SEC KG/SEC KG/SEC KG/SEC		6.76 # 447.56 16.252 576.45 1.7662 4.1594 5.7968 1814.# 76.995 225.87 232.#2 978.82 1375.# 2368.1	PSIA) R) LBM/SEC) LBM/SEC) LBM/SEC) SQ IN) PSIA) PSIA) LBM/SEC) R) R) R)

TABLE III. - DIGITAL-TO-ANALOG CHANNELS AND

VARIABLES FOR TF30-P-3

DAC channel	Digital variable	Engine variable
4	Y4	Fan hub pressure ratio
5	Y 5	Low-pressure-compressor pressure ratio
6	Y 6	High-pressure-compressor pressure ratio
7	Y7	Total fan airflow
8	Y 8	High-pressure-turbine flow parameter
9	Y 9	High-pressure-turbine enthalpy parameter
10	Y10	Low-pressure-turbine flow parameter
11	Y11	Low-pressure-turbine enthalpy parameter

TABLE IV. - ANALOG-TO-DIGITAL CHANNELS AND

VARIABLES FOR TF30-P-3

ADC channel	Digital variable	Engine variable
0	X0	Fan tip pressure ratio
1	X1	Corrected fan speed
2	X2	Low-pressure-compressor corrected airflow
3	X3	Bleed-shifted low-pressure-compressor corrected speed
4	X4	Bleed-shifted high-pressure-compressor corrected speed
5	X5	High-pressure-compressor corrected speed
6	X6	High-pressure-turbine pressure ratio
7	X7	High-pressure-turbine speed parameter
8	X8	Low-pressure-turbine pressure ratio
9	Х9	Low-pressure-turbine speed parameter

TABLE V. - SUPPLEMENTAL ANALOG-TO-DIGITAL CHANNELS

AND VARIABLES FOR TF30-P-3

ADC channel	Digital variable	Engine variable
10	X10	Combustor fuel flow
11	X11	High-pressure-compressor discharge static pressure
12	X 12	High-pressure-turbine inlet temperature
13	X 13	Nozzle area
14	X14	Low-pressure-compressor discharge static pressure
15	X15	Duct augmentor fuel flow
16	X16	Low-pressure-compressor discharge temperature
17	X 17	High-pressure-compressor discharge temperature
18	X18	Core augmentor fuel flow
19	X19	Core augmentor inlet temperature
20	X20	High-pressure-compressor rotor speed
21	X21	Fraction of 7th-stage bleed
22	X22	Fraction of 12th-stage bleed
23	X23	Power lever angle

TABLE VI. - COMPONENT MAP DESIGNATIONS

FOR TF30-P-3

Map index,	Map output variable	Equation
1	Fan corrected airflow	6
2	Fan hub pressure ratio	8
3	Low-pressure-compressor pressure ratio	14
4	High-pressure-compressor pressure ratio	20
5	High-pressure-turbine flow parameter	28
6	Low-pressure-turbine flow parameter	33

Map pair index,	M ap output variable	Equation
7	High-pressure-turbine enthalpy parameter	30
8	Low-pressure-turbine enthalpy parameter	35

TABLE VII. - TF30-P-3 FAN CORRECTED AIRFLOW DATA

1.49	84 2	.1342	1.0816	;			
.32 #1	.4268	.5335	.6482	.7478	.8537	.9684	1.8671
. 6888	.5848	.342#	.4134	.4899	.3778	.4467	.3587
.4674	.3389	.4895	.3171	.5184	.2964	.5494	.2379
	.6381	.3992	.4746	.4368	.4555	.4714	.4356
.5824	.4145	.5389	.3934	.5724	.3446	.5994	.2595
. 6 9 9 6	.6597	.4164	.5589	.5829	.5221	.5764	.4810
.6178	.459#	.6393	.3966	.6478	.3642	.6743	.292#
.0000	.7354	.4986	.6437	.5879	.6878	.6663	.5619
.7117	.4983	.7222	.4611	.7277	.4237	.7367	3158
.0000	.7917	.5814	.7471	.6498	.7328	.7397	.6919
.8186	.6325	.8251	.5965	.8381	.5061	.8391	.3634
	.8665	.6858	.8665	.7592	.8600	.8236	.8453
.8791	.8228	.963#	.7631	.9938	.6718	.999#	. 4326
. 2666	.9730	.7792	.9736	.9485	.9768	1.8274	.9643
1.0974	.95#5	1.1503	.9236	1.2527	.8354	1.2187	.5299
. 5655	1.0556	.8516	1.0556	1.0314	1.8543	1.2592	1.0513
1.2947	1.0469	1.3681	1.8331	1.4135	.9993	1.4316	.6165

TABLE VIII. - TF30-P-3 FAN HUB PRESSURE RATIO DATA

1.49	84 2	1342	1.3599)			
.3201	.4268	.5335	.6482	.7478	.8537	.9684	1.0671
. 6 8 6 8	.5135	.3746	.5135	.4370	.5135	.4745	.5135
.4995	.5135	.5244	.5131	.5494	.5122	.5744	.5117
	.5444	.3746	.5444	.4378	.5444	. 47.45	.5444
.4995	.5444	.5244	.5435	.5494	.5438	.5994	.5426
.0000	.5893	.4376	.5938	.5119	.5961	.5469	.5938
.5764	.5933	.6878	.5929	.6293	.5911	.6743	.5878
.0000	.6119	.4495	.6618	.5424	.6668	.5879	.6654
. 62 93	.6622	.6663	.6591	.6953	.6563	.7367	.6584
.0000	.6218	.5889	.7116	.5814	.7234	.6488	.7382
.6928	.7348	.7887	.7411	.8106	.7425	.8391	.7434
.0000	.6663	.5269	.7892	.6858	.8284	.7592	8384
.8236	.8372	.8791	.8417	.9266	8454	.9990	.8522
. 6 6 6 6	.6799	.6878	.8585	.7792	.9186	.8646	.9342
.9485	.9551	1.0274	.9718	1.8974	.9832	1.2187	.9972
. 0 0 0 0	.7252	.6783	.9410	8516	.9995	1.0314	1.0539
1.1213	1.8886	1.2092	1.1874	1.2947	1.1323	1.4310	1.1650

TABLE IX. - TF30-P-3 LOW-PRESSURE-COMPRESSOR

PRESSURE RATIO DATA

1.19	15 2	.4246	1.8953	•			
.3637	.6861	.7274	.8486	.9698	.9941	1.0062	1.0547
.1747	.398#	.3136	.3942	.3336	.3931	.3786	.3881
.4811	.3824	.4394	.3592	.4559	.3429	.5648	.1895
.2939	.5496	.4488	.5344	.4648	.5314	.5115	.5163
.5344	.5849	.5784	.4746	.5956	. 4526	.7022	.1895
.3971	.6937	.56#8	.6671	.5891	.6626	.6378	.6379
.66#3	.6219	.7866	.5815	.7254	.5549	.8579	.1895
.5004	.8263	.6965	.8165	.7333	.8158	.8869	.8013
.832#	.7789	.8686	.7888	.8698	.6679	.9214	.1895
.6514	1.0235	.8835	1.0223	.9197	1.0113	.9683	.9571
.9818	.9192	1.0009	.8244	1.0041	.7733	1.0168	.1895
.7878	1.1068	.9327	1.8765	.9591	1.8534	.9966	.9848
1.0082	.9412	1.#231	.8442	1.0244	.7896	1.0327	.1895
.7864	1.2130	.9532	1.0993	.9748	1.0761	1.0069	.9946
1.0173	.9495	1.0314	.8510	1.8319	.7952	1.6466	.1895
.9262	1.3949	1.6696	1.1614	1.0201	1.1178	1.0336	1.8284
1.6387	.9692	1.6451	.862#	1.0468	.8676	1.0517	.1895

TABLE X. - TF30-P-3 HIGH-PRESSURE-COMPRESSOR

PRESSURE RATIO DATA

1.43	52	1.9845	1.7463				
.6666	.7618	.8570	.9522	1.0000	1.0475	1.6951	
.5023	.6636	.5637	.5612	.5759	.5361	.5884	.5#75
.6021	.4757	.6093	.4582	.6211	.4176	.6394	.3492
.5418	.8#33	.6376	.7#52	.6566	.6798	.6746	.6437
.6911	.6000	.6986	.5745	.7897	.5158	.73#2	.3492
.592 9	.9867	.7277	.8812	.7542	.8519	.779€	.8496
.8009	.7537	.81 62	.7289	.8235	.6437	.8486	.3492
.6710	1.2679	.8443	1.1872	.8777	1.#677	.9#49	1.0069
.9268	.928	.9358	.8826	.9476	.7886	.9724	.3492
.6925	1.3534	.9128	1.2235	.9534	1.1861	.9789	1.1496
.9979	1.0143	1.0050	.9688	1.6146	.8445	1.0406	.3492
.7176	1.4495	.9713	1.3381	1.0172	1.2993	1.8489	1.2878
1.0567	1.0967	1.0621	1.6356	1.0696	.9878	1.8988	.3492
.7463	1.5368	1.#323	1.4575	1.8747	1.4669	1.8965	1.2965
1.1859	1.1659	1.1887	1.0967	1.1126	.9542	1.1195	.3492

TABLE XI. - TF30-P-3 HIGH-PRESSURE-TURBINE FLOW AND

ENTHALPY PARAMETER DATA

2.1150	1.783	6 1.	.2828	2.353	39			
.8347 .868	8 .9#28	.9369	.9716	1.6651	1.8391	1.8732		
.2115 .423	.6345	.8460	1.0575	1.269#	1.4885	1.692	1.9835	2.1148
1.2155 1.215	5 1.2155	1.2155	1.2071	1.1545	1.6519	.8851	.5772	. 6666
1.7372 1.673	7 1.5536	1.3700	1.1137	.8545	.6214	.4896	.1977	
.2115 .423	8 .6345	.8468	1.8575	1.2690	1.4885	1.6920	1.9835	2.1148
1.1648 1.164	8 1.1648		1.1571	1.1896	1.0070	.8466	.5580	
1.6772 1.618			1.0720	.8192	.6002	.3954	.19#6	.0000
.2115 .423	0 .6345	.8468	1.8575	1.2690	1.4885	1.6926	1.9835	2.1148
1.1186 1.118		1.1186	1.1103	1.0598	.9621	.8617	.5195	
1.6242 1.553				.79#9	.579#	.3742	.1871	
.2115 .423		.846₽	1.8575	1.2696	1.4885	1.692	1.9#35	2.1148
1.8758 1.875		1.0750	1.0667	1.0198	.9172	.7568	. 4874	. 4 7 8 8
1.5607 1.564		1.2358	.9957	.7556	.5588	.3629	.1765	. 6666
.2115 .423		.846#			1.4885	1.6920	1.9435	
1.4352 1.435		1.0352	1.0262	.9749	.8723	.7119	.4491	
1.5183 1.465	-	1.1935	.9684	.7274	.5296	.346#	.1694	.8888
.2115 .423		.8468	1.8575	1.2690	1.4865	1.6920	1.9835	•
.9974 .997		.9974	.9884	.9364	.8338	.6735	.4165	.0000
1.4477 1.485		1.1475	.9258	.7062	.5120	.3354	.1624	. 6666
.2115 .423		.846#	1.0575	1.269#	1.4805	1.6920	1.9035	2.1148
.9627 .962	-	.9627	.9538	.8992	.7953	.6350	.3848	. 6 6 6 6
1.3983 1.359		1.1122	.8919	.6709	. 49 43	.3177	.1553	. 6 6 6 6
.2115 .423		.8460	1.8575	1.2690	1.4885	1.692	1.9#35	•
.9300 .930		.9300	.9211	.8723	.7697	.6144	.3656	
1.3594 1.324	1 1.2358	1.0805	.8594	.6497	.4731	.3036	.1483	

TABLE XII. - TF30-P-3 LOW-PRESSURE-TURBINE FLOW AND

ENTHALPY PARAMETER DATA

3,6	257	1.851	3 4	.6554	3.23	31			
.3783	.4629	.5555	.6481	.8333	.9259	1.0185	1.1111		
.3625	.7251	1.8877	1.4583	1.8129	2.1754	2.5380	2.9886	3.2632	3.6254
2.6885	2.6885	2.6769	2.6606	2.6419	2.6070	2.5651	2.5823	2.3277	. 0 0 0 0
2.6737	2.4733	1.9721	1.5195	1.2340	.9699	.7436	.5#11	-2521	. 6666
.3625	.7251	1.0877	1.4583	1.8129	2.1754	2.5388	2.9886	3.2632	3,6254
2.2462 2	2.2462	2.2346	2.2229	2.2001	2.1764	2.1345	2.8786	1.8389	
2.3446	2.0950	1.6553	1.3288	1.6785	.85#3	.6384	.4186	.1972	
.3625	.7251	1.9877	1.45#3	1.8129	2.1754	2.5388	2.9886	3.2632	3.6254
1.8621	1.8621	1.85 # 5	1.8342	1.8156	1.7853	1.7458	1.6876	1.3966	
2.0627	1.8299	1.4775	1.1962	.97#5	.7339	.5382	.3427	.1616	
.3625	.7251	1.8877	1.45#3	1.8129	2.1754	2.5380	2.9886	3.2632	3.6254
1.6861	1.5945	1.5828	1.5642	1.5391	1.5083	1.4618	1.3966	1.1638	
1.8687	1.6327	1.3352	1.8863	.8713	.6724	.4784	.2974	.1325	
.3625	.7251	1.0877	1.45#3	1.8129	2.1754	2.5380	2.9006	3.2632	3.5254
1.2226	1.2174	1.2104	1.1918				1.0242		. 9888
		1.1154			.5108	.3556	.2198	.1002	
.3625	.7251	1.0877	1.4503	1.8129	2.1754	2.5380	2.9886	3.2632	3.6254
				1.0363					. 9 F F F
						.3168	.1939		
							2.9886		3.6254
	.9776	.9753		.9348	.9124			.6634	.6966
	1.138#	.9214		.5515	.4641	.278			
.3625				1.8129			2.9006		
.8961	.8961	.8845	.8752		.8263	.7867		.5935	
1.2835	. 7701	.8486	.6466	.4995	.3685	.2554	.1519	. 9614	. 6666

TABLE XIII. - TF30-P-3 DIGITAL-TO-ANALOG

CONVERTER INITIAL CONDITION AND

POTENTIOMETER ADDRESS DATA

```
.00000 .00000 .00000 .00000 .73550 .52752 .57264 .92456 .77955 .42480 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
```

TABLE XIV. - POTENTIOMETER SETTINGS

(a) EAI 680 Digital Computer

Potenti- ometer	Definition	Setting	Potenti- ometer	Definition	Setting
P00	P ₂ /40	0. 3674	P19	120/150	0.8000
P01	$\begin{bmatrix} \frac{2}{2/3} \end{bmatrix}$. 6667	P50	1/100	.0100
P02	0.7210/2 (eq. (10))	. 3605	P51	${ m P_{s,2.2}}^{ m /P_{2.2}}$. 9100
P03	0. 2796 (3/2) (eq. (10))	. 4194	P52	$\sqrt{\frac{5,2.2}{15/518.69}}$ 14.696/3	. 8328
P05	1/3	. 3333	P55	PLA _i /150	. 4610
P06	$P_{s,3}/3P_3$. 3143	P56	PLA _{min} /150	. 1000
P07	P _{s, 3, i} /100	. 5774	P60	T ₂ /1000	. 5187
P09	$\dot{w}_{2.1.i}^{3,0,1}$. 6112	P61	$\sqrt{518.69/2000}$. 5092
P10	$3(Ag_c/l)_{FID+IC}/40$. 8685	P63	$\sqrt{518.69/1000}$.7202
P11	2/3	. 6667	P64	5(0. 1989)/2 (eq. (17))	. 4973
P12	2/3	. 6667	P65	(0.84 - 0.515)/2 (eq. (17))	. 1625
P13	5(0.06)/3 (eq. (19))	. 1000	P67	5(0.4689 - 0.1989)/2 (eq. (17))	. 6750
P14	1/25	. 0400	P69	1. 16/5 (eq. (17))	. 2320
P15	$\dot{w}_{2,2,i}/200$. 6112	P70	$\tau_3/10$. 6555
P16	3/40	. 0750	P71	$\tau_3/10$. 6555
P17	$({\rm Ag_c}/l)_{ m MC}/50$. 1653	P72	T _{3. i} /1500	. 6088
P19	$\dot{\mathbf{w}}_{\mathbf{F4,MAX}}/3$. 5975	P73	$30R_A/V_3$. 1506
P20	0. 1852/2 (eq. (23))	. 0926	P74	3/8	. 3750
P21	1.0322/2 (eq. (23))	. 5161	P79	XBL7	0
P22	5(0, 08032/2 (eq. (23))	. 2008	P81	$\sqrt{518.69/1500}$. 5880
P23	5(0. 12588)/2 (eq. (23))	. 3147	P85	0.7	. 7000
P25	$\dot{\mathbf{w}}_{\mathbf{F4.i}}/3$. 5975	P88	4(0.055) (eq. (25))	. 2200
P26	$\dot{w}_{F4, min}/3$. 0948	P99	$12(14.696)\sqrt{5/518.69}/27$. 6397
P27	$\dot{w}_{F4}/30$	0	P100	$P_0/40$. 3674
P31	0. 7588/2 (eq. (12))	. 3794	P105	1.049/10 (eq. (54))	. 1094
P32	$100\sqrt{518.69/1000}/6$ (14.696)	. 8184	P106	A _{N, min} /1600	. 3223
P33	3(0.2412)/2 (eq. (12))	. 3618	P107	$160(1.622\times10^{-4})$ (eq. (25))	. 2060
P35	$\dot{\mathbf{w}}_{\mathbf{F7, i}}/6$	0	P109	XBL12 _i	0
P36	5/6	. 8333	Q02	$\left[\left(P/P \right)_{LC} / \left(P/P \right)_{LC, M} \right] / 10$. 1007
P37	5/6	. 8333	Q04	$[(P/P)_{FIP}/(P/P)_{FID, M}]/10$. 1002
P39	0.84/2 (eq. (17))	. 4200	Q09	A _{N, i} /1600	. 3223
P40	$ \dot{\mathbf{w}}_{\mathbf{F1},7,\mathbf{i}} ^{8}$	0	Q12	$12(\mathrm{Ag_c/l})_{\mathrm{FID+LC}}/400$. 3479
P41	5/8	. 6250	Q14	W _{2.2, i}	. 6216
P42	5/8	. 6250	Q19	$3(\mathrm{Ag_c}/l)_{\mathrm{HC}}/80$. 3106
P43	5, 8	. 6250	Q22	$(P/P)_{HC}/(P/P)_{HC,M}/10$. 1003
P47	1/5	. 2000	Q24	PLA/150	. 8333

TABLE XIV. - Continued. POTENTIOMETER SETTINGS
(b) EAI 231-4 Analog Computer

Potenti-	Definition	Setting	Potenti-	Definition	Setting
ometer			ometer		
P09	1/2	0.5000	Q12	$\dot{w}_{1, 3, i}/300$	0. 3630
P10	$(\mathrm{Ag}_{\mathrm{c}}/l)_{\mathrm{D}}/375$. 7224	Q15	$3c_{p, 2, 2^{7}1, 3}/10c_{p, 1, 3}$. 4206
P11	3/8	. 3750	Q16	$c_{p, 1, 3}$, $3^{1/2}$, $3^{1/2}$, $3^{1/2}$. 6980
P12	$(\mathrm{Ag}_{\mathrm{c}}/l)_{\mathrm{D}}/375$. 7224	Q20	$2(Ag_{c}/l)_{DAB}/75$. 4014
P13	3/8	. 3750	Q21	3/8	. 3750
P14	$\gamma_{1.3}/2$. 6980	Q23	1/3	. 3333
P15	15R _A /2V _{1.3}	. 1112	Q24	3c _{p, 1. 3} ,	.7177
P16	$c_{p, 3^7 1. 3^{/60} c_{p, 1. 3}}$. 0235	Q26	$\tau_{1.6}/100$. 3732
P19	3/4	. 7500	Q39	1/2	. 5000
P20	$2(\mathrm{Ag}_{\mathrm{c}}/l)_{\mathrm{DAB}}/75$. 4014	Q40	8/150	. 0533
P21	3/8	. 3750	Q41	$8\eta_{\rm DAB}^{\rm HVF}$ 1. $7/10^6 { m c_p}$, 1. 7	. 3815
P22	$\dot{w}_{1.6, i}/300$. 3630	Q42	$3c_{p, 1.6}^{\gamma_{1.7}/10c_{p, 1.7}}$. 3843
P23	1/5	. 2000	Q43	1/6	. 1667
P24	^{3c} p, 2	. 7176	Q47	4/5	. 8000
P25	$^{ au}$ 1. 6 $^{/100}$. 3732	Q48	0.825(4/5) (eq. (58))	. 6600
P26	$^{10}{ m R}_{ m A}/{ m V}_{ m 1.~3}$. 1482	P50	$^{15}{ m K_D^{V}}_{1.~3}{}^{({ m Ag}}_{ m c}/{}^{l})_{ m D}/{}^{4}{ m R_A}$. 1592
P27	T _{1.6, i} /1000	. 6640	P51	$W_{1, 3, i}/8$. 3746
P40	1/5	. 2000	P52	$(WT)_{1, 3, i}/6000$. 3315
P41	6_{7} 1. $7/50$. 1537	P54	$^{15 { m K}}_{ m DAB} { m V}_{ m 1.6} { m (Ag}_{ m c}/\ell)_{ m DAB} { m /4R}_{ m A}$.0150
P42	1/5	. 2000	P55	$W_{1.6, i}/8$. 3665
P44	$125R_{A}/V_{1.7}$. 1029	P60	0.9√2 K _{CN}	. 6522
P46	4(1.575)/50 (eq. (58))	. 1260	P61	135 4000 $K_{DN}/10^4$. 4325
P48	0.8(1.0) (eq. (58))	. 8000	P62	W _{1.7, i} /150	. 3386
Q10	1/16	. 0625	P63	$(WT)_{1, 7, i}/10^5$. 3376
Q11	3/20	. 1500			

TABLE XIV. - Concluded. POTENTIOMETER SETTINGS

(e) EAI 231-5 Analog Computer

ometer			Potenti-	D efinition	Setting
			ometer		
P00	$4{({ m Ag}_{ m c}/t)}_{ m B}/2000$	0.3912	Q26	^{2e} p, 4 ⁵ 4. 1 ⁷ ^{5e} p, 4. 1	0.5388
P01	$\dot{w}_{3, i}/200$. 5700	Q28	8/15	. 5333
P05	$ au_{3}$ / 100	. 8474	Q33	$ m K_{BWLT}^{-40}$. 0250
P06	$T_{3,i}/2000$. 6358	Q34	$c_{ m p,3}/c_{ m p,6}^{ m 40}$. 0244
P07	1/4	. 2500	Q35	1/40	. 0250
P08	1/2	. 5000	Q36	$10^5~{ m K_{CAB}/8}$. 0198
P12	R_A/V_3	. 1852	Q37	$6\eta_{ ext{CAB}}$ HVF/ $10^6 c_{ ext{p, 7}}$. 3504
P15	$8\gamma_4/5$. 1677	Q3 8	$4c_{ m p,6}/10c_{ m p,7}$. 4000
P16	$50R_{A}/4V_{4}$. 9510	Q39	3/100	. 0300
P17	5/8	. 6250	Q41	4/5	. 8000
P20	1/2	. 5000	Q42	0,825 (4/5) (eq. (52))	. 6600
P25	$\gamma_{4, 1}/2$. 6609	Q45	$30/\pi I_{ m L}$. 1431
P26	$R_A/15V_{4.1}$. 1396	Q46	$15/\pi I_{ extbf{H}}$. 1672
P27	3/8	. 3750	Q47	3/5	. 6000
P28	$ m K_{PR6}/10$. 1049	Q48	$4 \times 10^4 \pi / 30 J$. 4485
P30	$(N_L/\sqrt{T_{4.1}})_M/10(N_L/\sqrt{T_{4.1}})$. 1005	Q63	1/2	. 5000
P34	$c_{\rm p,4.1}/8c_{\rm p,6}$. 1281	Q91	2/5	. 4000
P40	4(1, 3625)/50 (eq. (52))	. 1090	Q92	5c _{p. 2} /2	. 5980
P45	$N_{L, i}/2 \times 10^4$. 9685	Q93	2/5	. 4000
P46	$N_{H, i}/2 \times 10^4$. 6966	Q98	$4 \times 10^4 \pi / 30 J$. 4485
P47	$3c_{\rm p, 2, 2}/5$. 1444	P50	${ m K_BV_3(Ag_c/l)_B/R_A}$. 2103
P48	(0.7158)0.8 (eq. (52))	. 5728	P51	w _{3, i} /2	. 5210
Q 00	$4(\mathrm{Ag_c}/l)_{\mathrm{B}}/2000$. 3912	P54	W _{4, i} /2	. 6725
Q01	1/4	. 2500	P55	(WT) _{4, i} /5000	. 6087
Q05	$3\tau_3/400$. 6356	P56	$4R_A/V_4$. 1592
Q07	40(0.01985) (eq. (27))	. 7940	P57	$4000\sqrt{10}/45000$. 2846
Q08	20(0.04744) (eq. (26))	. 9488	P58	$4R_{A}/5V_{4.1}$. 8878
Q11	3/20	. 1500	P59	$3\gamma_{4. \ 1}/100c_{p, \ 4. \ 1}$. 1550
Q15	$3\eta_{\rm B}$ HVF $\gamma_4/5 \times 10^4$ c _{p, 4}	. 4436	P60	25W _{4. 1, i}	. 6884
Q16	8c _{p, 374} /c _{p, 4}	. 7828	P61	$(WT)_{4, 1, i}/100$. 5235
Q19	$\sqrt{10}(N_{H}/\sqrt{T_{4}})_{M}/5(N_{H}/\sqrt{T_{4}})$. 6321	P62	0.5	. 5058
Q20	1/2	. 5000	P63	1/10c _{p,6}	. 3927
Q21	1/4	. 2500	P66	3c _{p, 2, 2} ,/4	. 1824
Q23	$ m K_{BWHT}/20$. 0132	P67	6/5(e _{p, 3} ,)	. 2925
Q25	$c_{p, 3}$, 4. 1/5 $c_{p, 4. 1}$. 2517			

TABLE XV. - SCALE FACTORS

Variable	Scale factor	Variable	Scale factor	Versionle	Seale faction
				Variable	
P _O	$27.579 \text{ N cm}^2 (40 \text{ psia})$	T _{1.3}	555, 55 K (1000° R)	N. V 2.1	$2\cdot 10^4~\mathrm{fpm}$
P ₂	27, 579 N cm ² (40 psia)	T _{1.6}	555, 55 K (1000° R)		2·10 ⁴ rpm
P _{1.3}	55. 158 N cm ² (80 psia)	T _{1.7}	2222, 2 K (4000 ^o R)	NH V 2.2	2·10 ⁴ rpm
P _{1,3} P ₂	n	'w' 2	272, 15 kg, sec (600 lbm, sec)	$N_{\rm H}$ $\sqrt{T_4}$	670.82 rpm · K^{-1} 2 (500 rpm - " R^{-1} 2)
(P P)FID	8		90, 718 kg. sec (200 lbm sec)	$^{N_{ m H}(\dot{w}_{ m p})_{ m HT}}$	1461.9 kg-K-cm 2 -sec $^-1{\rm rpm}^{-1}{\rm N}^{-1}$ (4000 lbm $^{\rm o}$ R-psia $^{\rm -1}$ -rpm $^{\rm -1}$ sec $^{\rm -1}$)
P _{2.1}	82, 738 N. cm ² (120 psia)		5. 4431 kg/sec (12 lbm·sec)	N _H (hp) _{NT}	$2.0792\times10^7~\mathrm{J}\text{-kg}^{-1}\text{-}\mathrm{K}^{*1}~^2\text{-}\mathrm{rpm}^{-1}~(6667~\mathrm{Btu}\text{-lbm}^{-1}\text{-}^0\mathrm{R}^{-1/2}\text{-}\mathrm{rpm}^{-1})$
(P P) _{LC}	5		90, 718 kg. sec (200 lbm. sec)	N. VT4.1	536.66 rpm- K^{-1} 2 (400 rpm- $^{\circ}$ R- 1 2)
P _{2.2}	103, 42 N. em ² (150 psia)		2, 2680 kg. sec (5 lbm, sec)	$N_{\rm L}(\dot{ m w}_{ m D})_{ m LT}$	$1.4619{>}10^{4}~{\rm kg} - {\rm K} - {\rm cm}^{2} - {\rm sec}^{-1} - {\rm rpm}^{-1} \cdot {\rm N}^{-1} \; (4{\rm x}10^{4}~{\rm lbm} - ^{\rm o}{\rm R} - {\rm psia}^{-1} - {\rm rpm}^{-1} - {\rm sec}^{-1})$
Ps. 2.2	$103.42 \text{ N cm}^2 (150 \text{ psia})$, , 3	90,718 kg/sec (200 lbm/sec)	1 (du) 1 N	$6.2374 \times 10^{7} \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1} \cdot \text{Z}^{-1} \text{pm}^{-1} (2 \cdot 10^{\frac{4}{3}} \text{Btu-lbm}^{-1} \cdot ^{-0} \text{R}^{-1} / ^{2} - \text{rpm}^{-1})$
(P P) _{HC}	2		1.3608 kg sec (3 lbm·sec)	W2.1V2.1 62.1	34.019 kg sec (75 lbm sec)
P ₃	275.79 N cm ² (400 psia)		90,718 kg sec (200 lbm sec)	W2 2 V 72 2 69 9	18.144 kg sec (40 lbm sec)
р 5. 3	275.79 N cm^2 (400 psia)	W.BLHT	4.5359 kg sec (10 lbm sec)	(Ah)	3.4868×10 ⁵ J. kg (150 Btu lbm)
P4	275.79 N cm^2 (400 psia)	w.4. 1	90,718 kg sec (200 lbm sec)	T.1(44)	4.6471×10 ⁵ J kg (200 Btu lbn)
P4. 1	103.42 N cm^2 (150 psia)	WBLLT	2.2680 kg sec (5 lbm sec)	XPL7	1
P _{4.1} P ₄	-	, k	90, 718 kg sec (200 lbm, sec)	XPI.12	
ь	55, 158 N, cm ² (80 psia)	W.	2.7215 kg sec (6 lbm. sec)	PLA	150°
P ₅ P _{4.1}	1	14.7	90.718 kg sec (200 lbm sec)	WET	2. 2679 kg, sec (5 lbm, sec)
P ₆	55, 158 N cm ² (80 psia)	W2-W2.1	136.08 kg. sec (300 lbm. sec)	w.FZ2	
Д	55.	w.1.3	136.08 kg, sec (300 lbm sec)	w FZ3	
P _{1.6}		w1.6	136.08 kg. sec (300 lbm sec)	wFZ4	
P _{1.7}	-	wF1.7	3.6787 kg. sec (8 lbm. sec)	w.FZ5	
T_2	555, 55 K (1000 ^o R)	w _{1.7}	136.08 kg sec (300 lbm sec)	AN	$1.0322 \text{ m}^2 (1600 \text{ in}, ^2)$
(T T)	2	W _{2.2}	13.608 kg (30 lbm)	Cd, NAN	$1.0322 \text{ m}^2 (1600 \text{ in.}^2)$
(T Demo	2	W ₃	0. 90718 kg (2 lbm)	(P P) _{CN}	1
T _{2.1}	1111.1 K (2000 ⁰ R)	w ₄	0.90718 kg (2 lbm)	FNT	3.6
(T T)	2	W. 4. 1	11.340 kg (25 lbm)	Cd. 8P7 FN7	19.154 N cm ² (27.78 psia)
T _{2.2}	833, 33 K (1500° R)	W _{1.3}	3. 6287 kg (8 lbm)	NG(d d)	1
(T T)HC	2	W _{1.6}	3.6787 kg (8 lbm)	FN17	3.6
Т3,	1666.7 K (3000 ⁰ R)	W1.7	68. 038 kg (150 lbm)	Cd. 1, 8P1, 7 FN17	19.154 N cm 2 (27.78 ps.a)
Т3	1111. 1 K (2000 ^O R)	(WT) ₄	1259, 9 kg-K (5000 lbm- ^O R)	A _{1.8}	$0.51613 \text{ m}^2 (800 \text{ in.}^2)$
T.	2222. 2 K (4000 ^O R)	(WT) _{4.1}	25, 199 kg-K (100 lbm- ⁰ R)	N _L (Q _{L,T} -Q _{FOD} -Q _{FID+LC})	$N_{\rm L}(Q_{\rm LT} - Q_{\rm EDD} - Q_{\rm FID}_{\rm eTC})$ 4. 5192 · 10 ¹⁰ N · cm · rpm (4 · 10 ⁹ inlbf - rpm)
T.4. 1	1388. 9 K (2500 ⁰ R)	(WT) _{1.3}	1511, 9 kg-K (6000 lbm- ⁹ R)	NH(QNT-QHC)	$2.2596 \cdot 10^{10} \mathrm{N}_{-\mathrm{cm}} \cdot \mathrm{rpm} (2 \cdot 10^9 \mathrm{mlbf-rpm})$
T 9	1111. 1 K (2000 ⁰ R)	(WT) _{1,7}	$2.5199 \cdot 10^4 \text{ kg} \cdot \text{K} \cdot (1 \cdot 10^5 \text{ lbm}^{-1} \text{R})$		
T ₆	1111, 1 K (2000" R)	7	2 · 10 ⁴ rpm		
1-	2777, 6 K (5000) R)	N. 1.1.	2×10 ⁴ rpm		

TABLE XVI. - DIGITAL-TO-ANALOG

MULTIPLIER UTILIZATION

FOR TF30-P-3

DAC channel		DAM chan- nel (analog	DAM variable	
Digital input ^a	Analog input ^b	output)		
7	19	7	$P_2(\dot{w}_c)_{FAN}$	
8	20	8	$N_{H}(\dot{w}_{p})_{HT}$	
9	21	9	N _H (hp) _{HT}	
10	22	10	$N_L(\dot{w}_p)_{LT}$	
11	23	11	N _L (hp) _{LT}	

^aSee table III for list of digital input variables. ^bSee figure 18 for source of analog input variables.

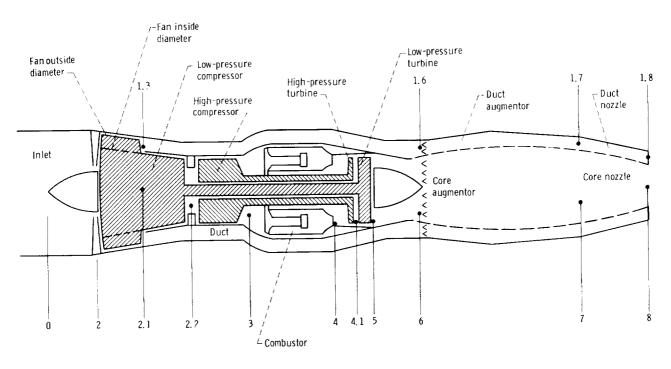


Figure 1. - Schematic of TF30-P-3 engine.

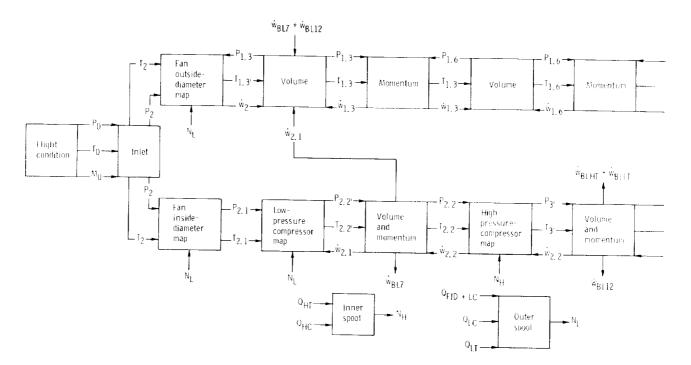
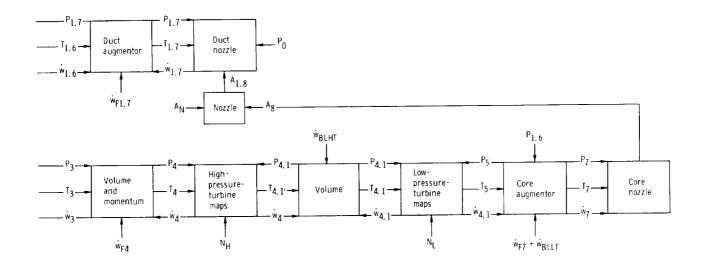



Figure 2. Real-time simulation

flow diagram for TF30-P-3.

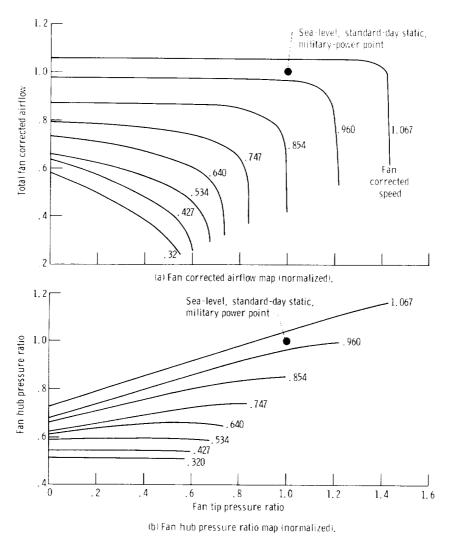
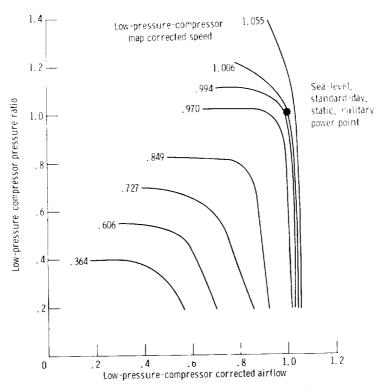
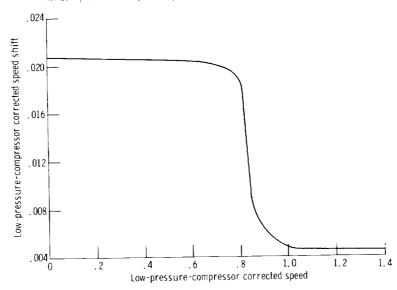
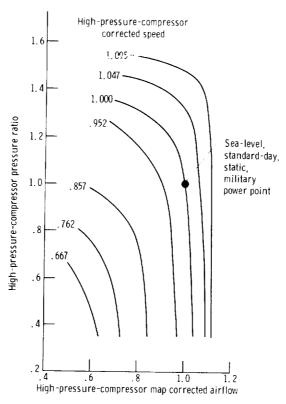
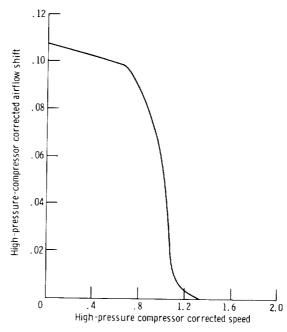




Figure 3. - Bivariate functions representing performance of fan.

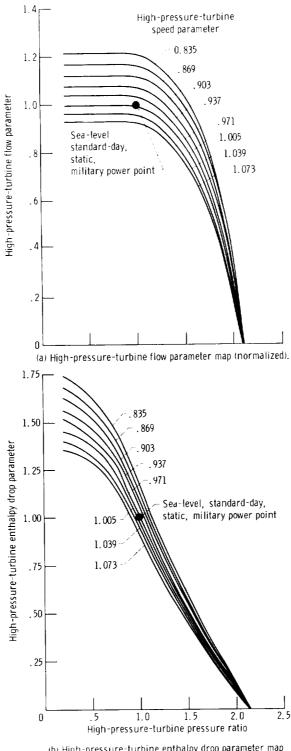


(a) Low-pressure-compressor pressure ratio map (normalized).



(b) Shift in low-pressure-compressor map corrected speed due to seventh-stage bleed (normalized by sea-level, standard-day, static, military power value of corrected speed).

Figure 4. - Bivariate functions representing performance of low-pressure compressor.



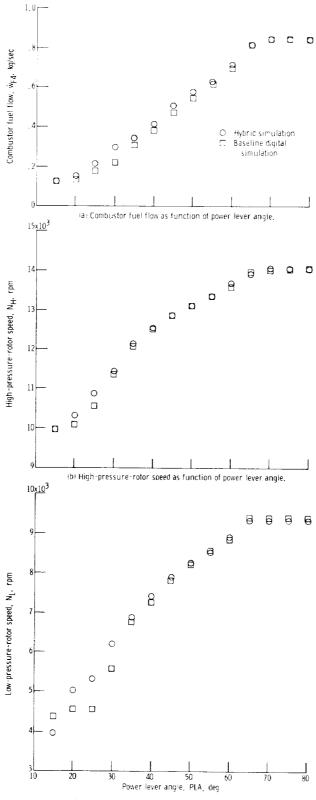
(a) High-pressure-compressor pressure ratio map (normalized).

(b) Shift in high-pressure-compressor map corrected airflow due to 12th-stage bleed (normalized by sealevel, standard-day, static, military power values of corrected airflow and speed).

Figure 5. - Bivariate functions representing highpressure-compressor performance.

(b) High-pressure-turbine enthalpy drop parameter map (normalized)

Figure 6. - Bivariate functions representing highpressure-turbine performance.



(b) Low-pressure-turbine enthalpy drop parameter map (normalized),

Figure 7. - Bivariate functions representing low-pressure-turbine performance.

		EAI 231-R analog		
EAI 6	90 hybrid		Duct	
EAI 640 digital	EAI 680 analog		Duct augmentor Duct nozzle	
Function generation for- Fan Low-pressure compressor High-pressure compressor	Fan input calculations Low-pressure-compressor input calculations High-pressure-compressor input calculations 640-680 Interface Control interface	Central patching	EAI 231-R analog	
Turbines	SEL 810B digital		Turbine input calculation Core augmentor Core nozzle	
	Control		Rotor dynamics	

Figure 8. - Split of TF30-P-3 simulation computation load.

(c) Low-pressure-rotor speed as function of power lever angle.

Figure 9. – Comparison of hybrid and baseline digital results for sea-level, standard-day static conditions.

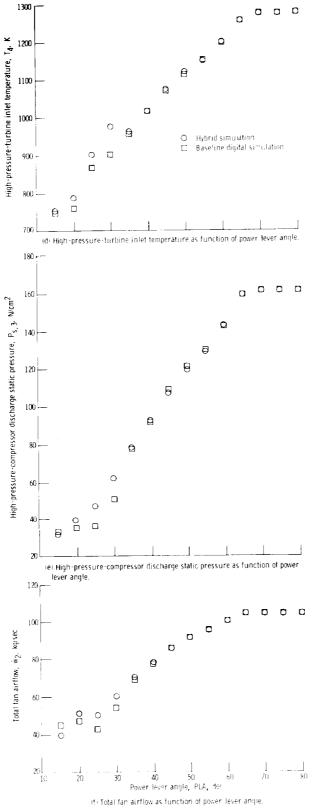
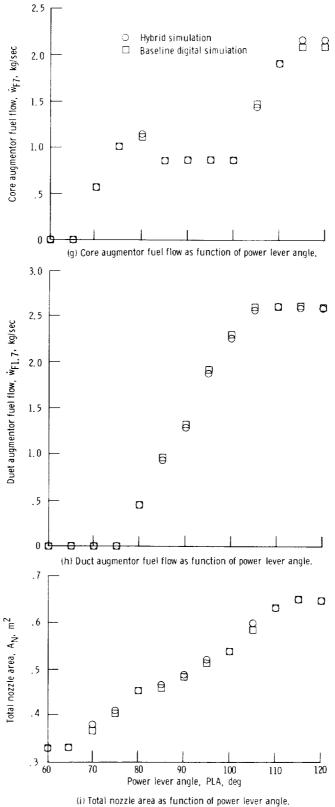
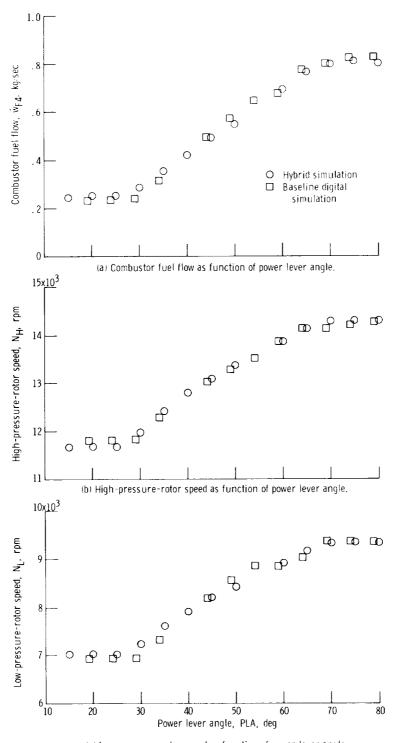




Figure 9. - Continued.

mozzie area as rametion of power lever at

Figure 9. - Concluded.

(c) Low-pressure-rotor speed as function of power lever angle.

Figure 10. - Comparison of hybrid and baseline digital results for 6.096-kilometer (20 000-ft) simulated altitude, Mach 1.2 flight condition.

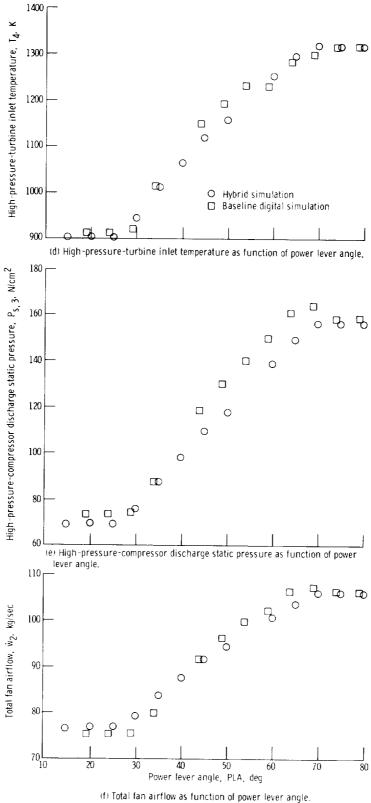
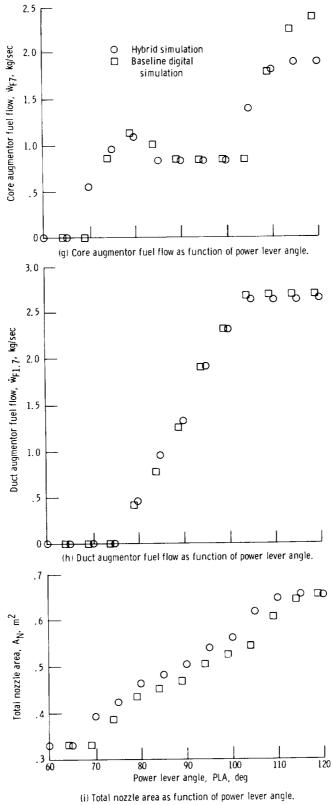



Figure 10. - Continued.

otal nozzle area as function of power lever angle. Figure 10. - Concluded.

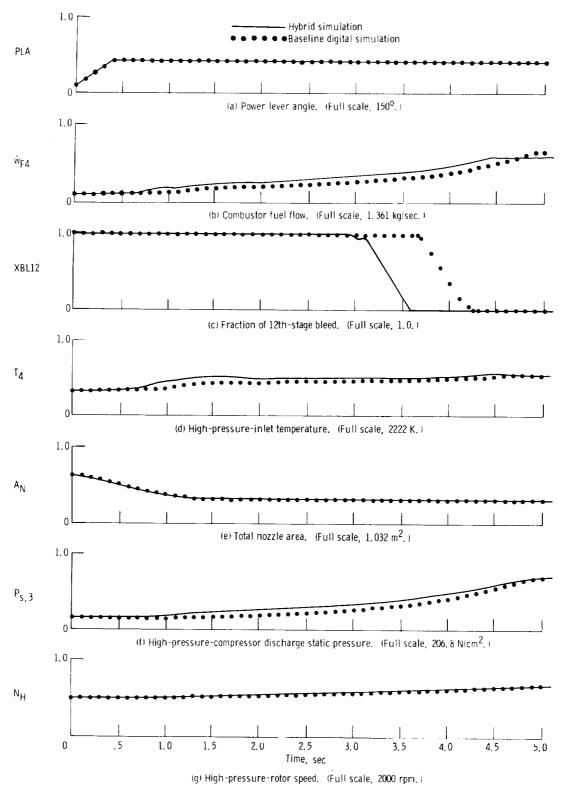


Figure 11. - Comparison of hybrid and baseline digital simulation responses to throttle slam from power lever angle of 15^{0} to 67^{0} at 125 degrees per second.

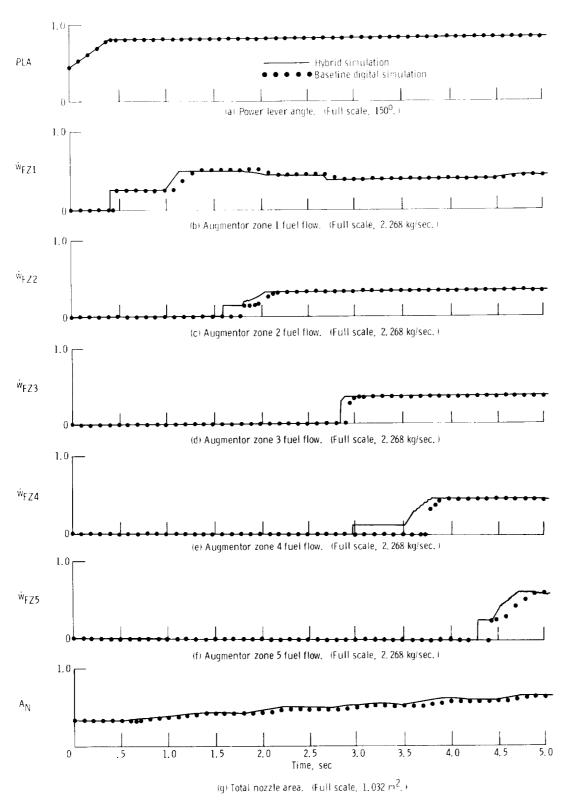


Figure 12. - Comparison of hybrid and baseline digital simulation responses to throttle slam from power lever angle of 67° to 120° at 125 degrees per second.

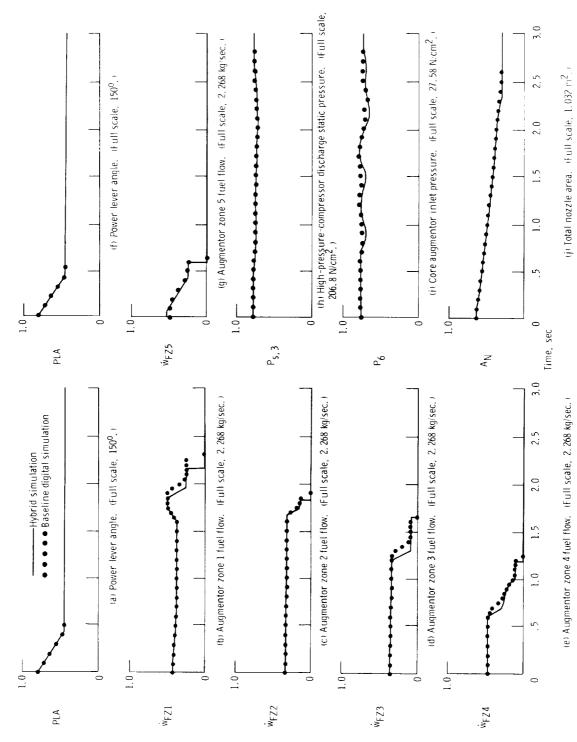


Figure 13. - Comparison of hybrid and baseline digital simulation responses to throttle chop from power lever angle of 1200 to 670 at 125 degrees per second.

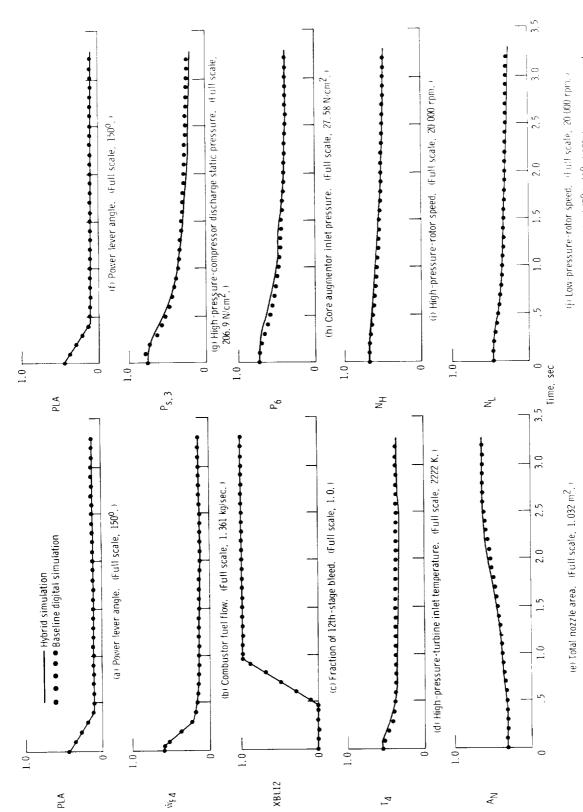


Figure 14. - Comparison of hybrid and baseline digital simulation responses to throttle chop from power lever angle of 670 to 150 at 125 degrees per second.

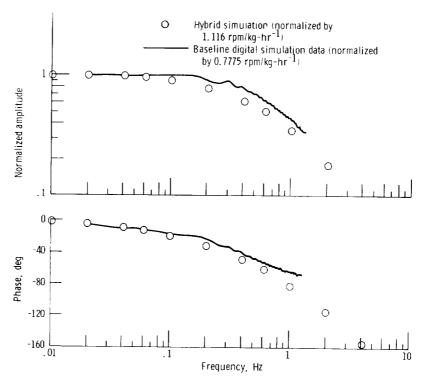


Figure 15. - Comparison of hybrid and baseline digital frequency responses of highpressure-rotor speed to fuel flow oscillations. Sea-level, standard-day, static conditions; power lever angle, 50°.

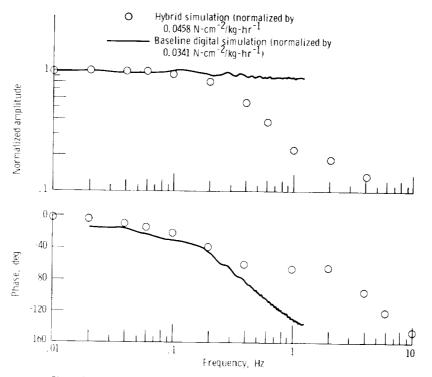


Figure 16. - Comparison of hybrid and baseline digital frequency responses of highpressure-compressor discharge static pressure to fuel flow oscillations. Sea-level, standard-day, static conditions; power lever angle, 50°.

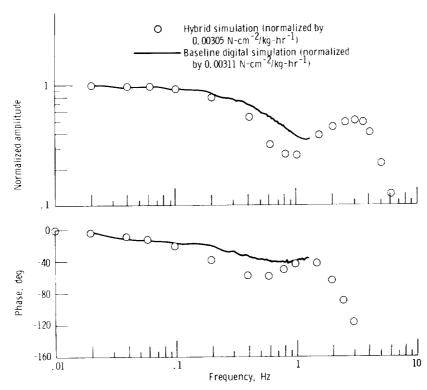
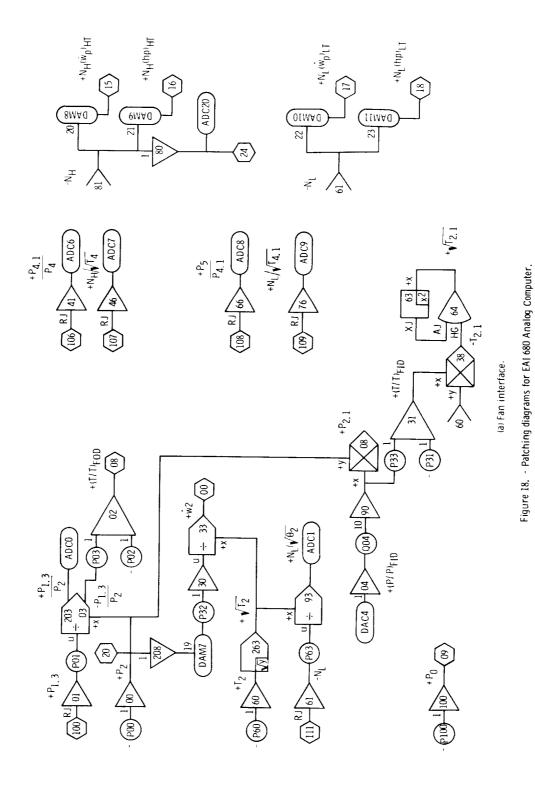



Figure 17. - Comparison of hybrid and baseline digital frequency responses of core augmentor inlet pressure to fuel flow oscillations. Sea-level, standard-day, static conditions; power lever angle, 50^{0} .

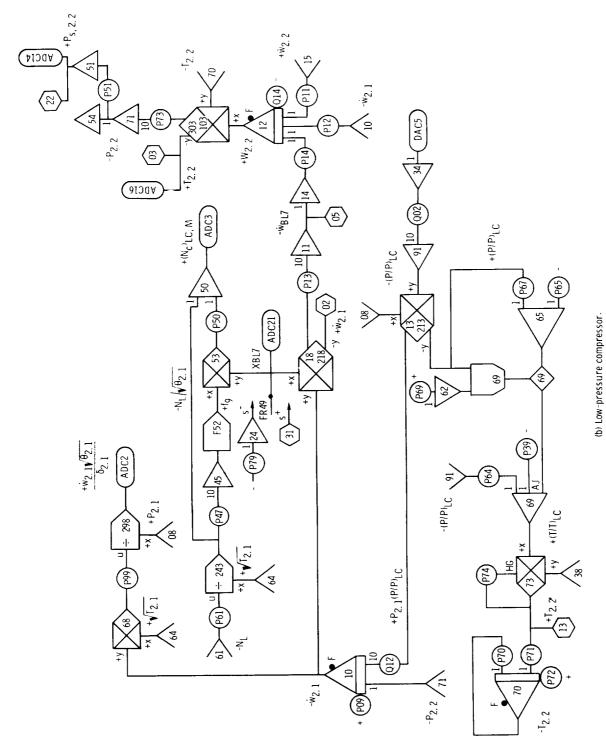
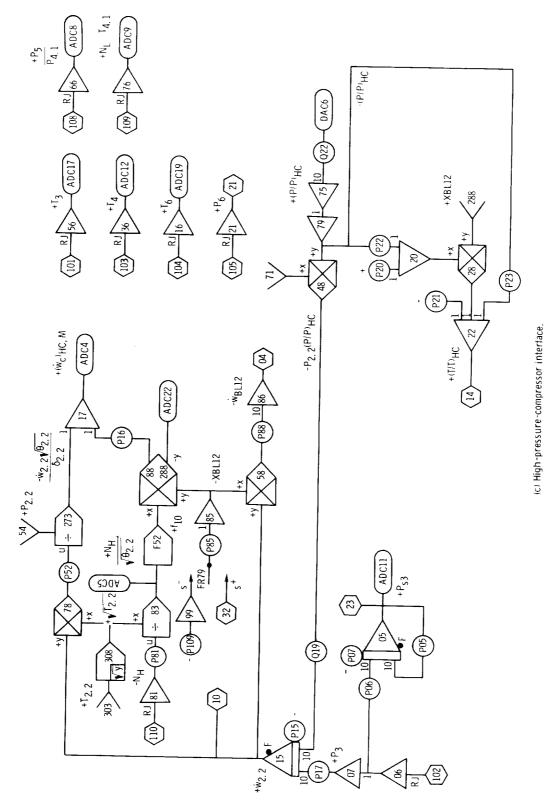
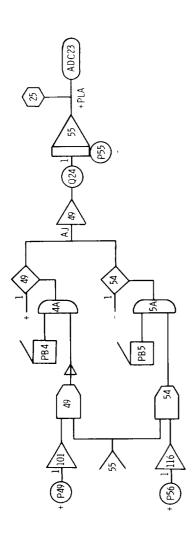
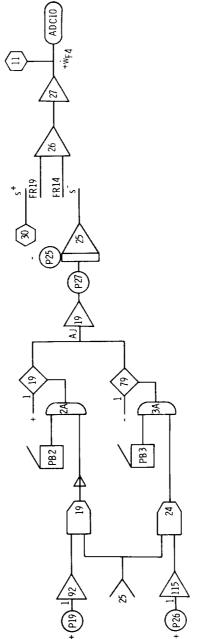
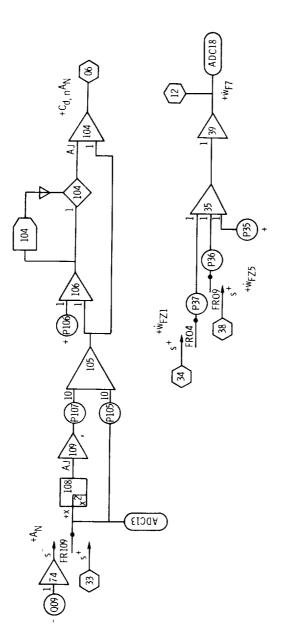
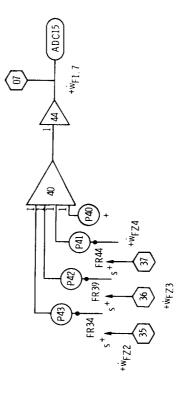


Figure 18. - Continued.


Figure 18. - Continued.



(d) Power-lever-angle - fuel-flow-ramp generators.

Figure 18. - Continued.

(e) Control outputs.

Figure 18. - Concluded,

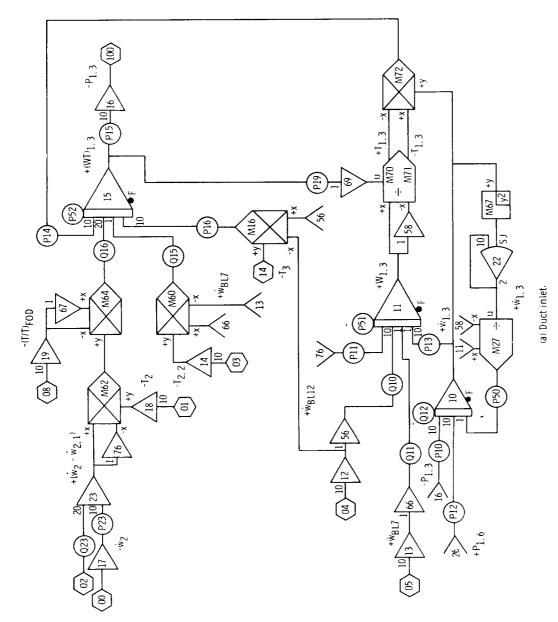


Figure 19, - Patching diagrams for EAI 231-4 Analog Computer.

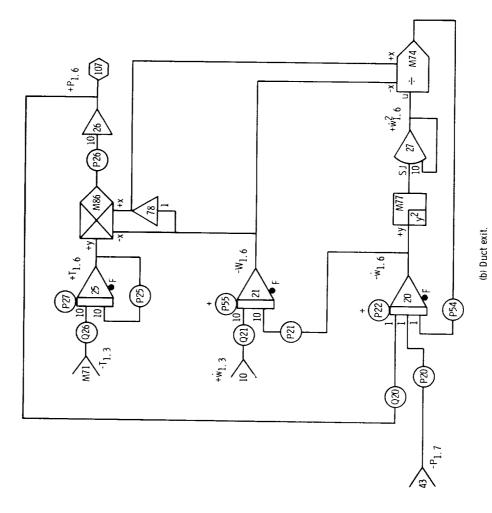
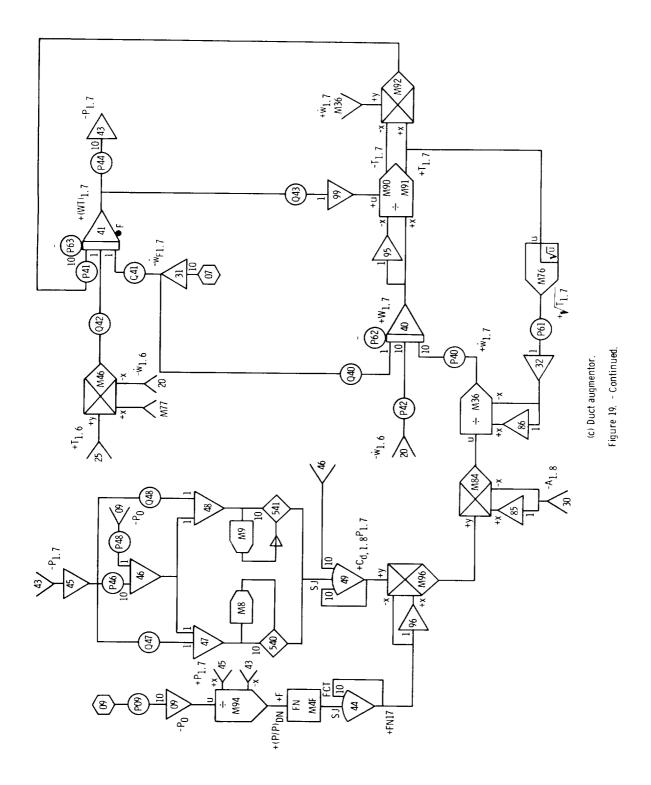



Figure 19. - Continued.

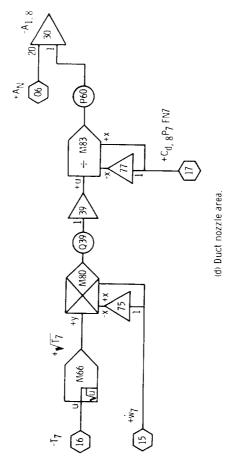


Figure 19. - Concluded.

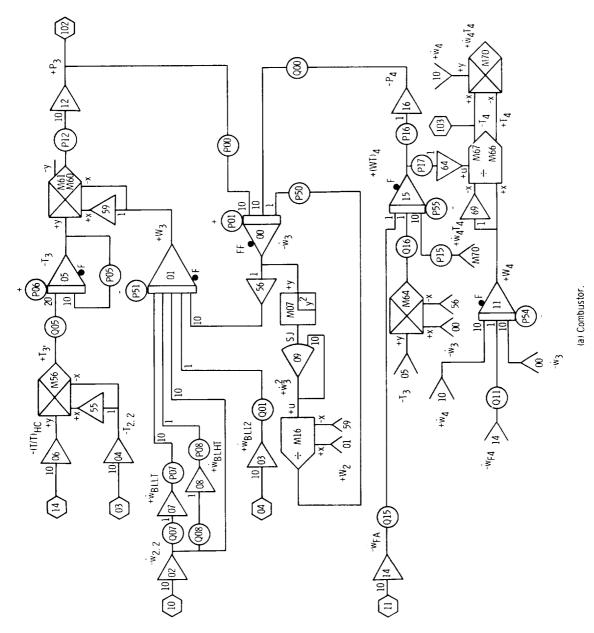


Figure 20. - Patching diagrams for EAI 231-5 Analog Computer.

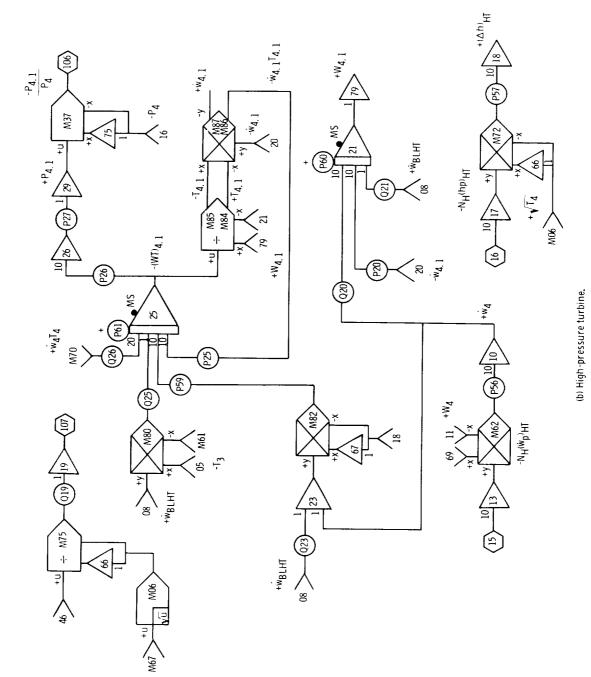


Figure 20. - Continued.

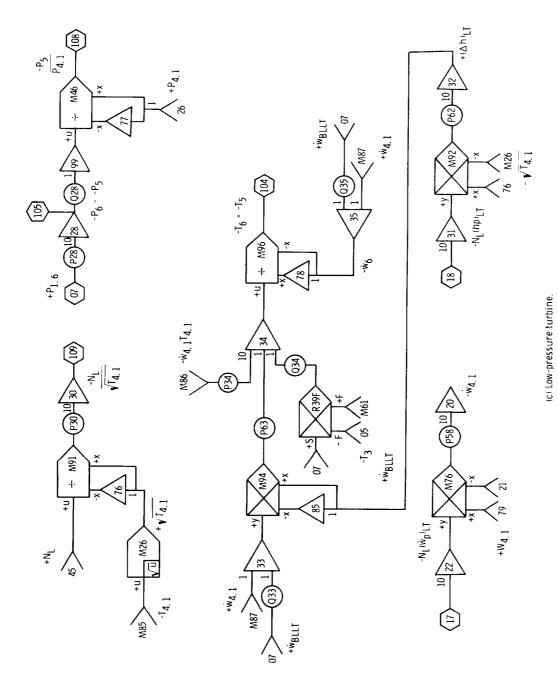


Figure 20. - Continued.

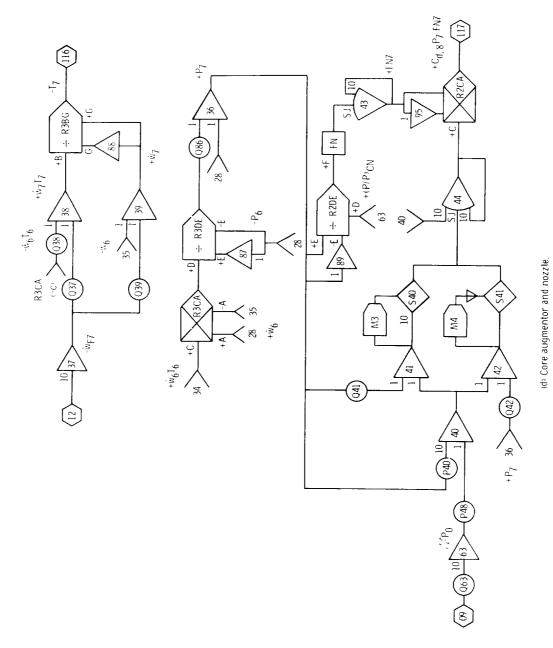


Figure 20. - Continued.

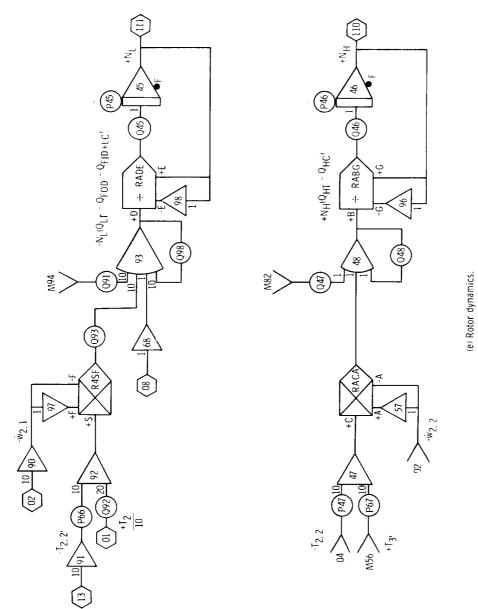


Figure 20. - Concluded.

NASA-Langley, 1974 E-7904 101