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Abstraot. This paper o f f e r s  a systematic, computer-aided, self-documenting 
methodology f o r  developing hybrid computer s l rmla t ions  of  turbofan engines. Rw 
methodology t h a t  l a  presented makes Use o r  a host  p-gram t h a t  can rrur on a 3- 
d i g i t a l  comute r  and 8 machine-dependent targtt (hybriQ) pro&mm. rtrc host  pro- 
gram performs a l l  of  t h e  ca lcu la t ions  and da ta  ~ l p u l a t i o n s  t h a t  a r e  needcd t o  
transform x re r8upp l i ed  en@ne design infooraratlcn t o  a t o m  s u i t a b l e  f o r  the 
hJb-id computer. The host  program a l s o  trims t h e  self-contained enelne &el t o  
m t c h  specifled design poirit I n r o ~ t l o n .  A terrt case is described and compari- 
sens between hybrid simulation and s p r - t t i e d  engine p?;+rCormance da t a  a r e  pre- 
sented. 

INTRODUCTION 

The development of a i r a r a f t  propulsion sys t~ ine  depends, t o  a m e a t  ex ten t ,  

on one being ab le  t o  predic t  the per fommce of  the  propulsion s jatem and its 

associated controls .  Coisputar simulations provide the mans f o r  analyzing the 

behavier and in t e r ac t ions  of them Increasingly complex systems p r i o r  t o  bulrding 

and t e s t i ~ g  expentilve hardware. 

The hybrid (analogand d i g i t a l )  c~mputoroPfers  the opportun:ty t o  combine t h e  

best  fea tures  o r  d i g i t a l  and analog computation t o  s a t i s f y  t he  s t r i ngen t  require- 

ments of eng1r.e simulatlan. Orre can achieve t h e  desired s teady-state  and dynamic 

scn,aracies wlth reasonable sn?utl?n times and t h e  user  is  provided "hands-an" in- 

tersc*.ive onnt rc l  o f  t he  slmulation wlth convenient display and recording of sia- 

orat ion resul ts .  

Hybrid 2omputer simulations or the P ra t t  and Whitney (PWA) TP30-P-3 and 

P100-PW-100 turbofan englnes have been previously developed (References 1 t o  3) 

and used t o  support the  development of advanced e l ec t r cn l c  engine controls  (Ref- 

emncea 4 t o  7) a: the  Lewis Research Center. In  the cont ro l  applications, the  

engine $lmulntions served a s  "test-beds" f o r  evaluat ing new cont ro l  laws and fo r  

verifying cont ro l  software p r l o r  t o  engine t e s t i ng .  
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Unfortunately, the development of  accurate hybrid coslputtr simulations ha8 

been rleued a8 an .arta which requlras spec ia l i s t s  experiencul i n  dmamlc system 

mdellng, collputer progamlr& m d  computer operat1w;s. Then  are, in fac t ,  a 

number of problem8 that  must be dea l t  with when developing hybrid computer slm- 

la t ions  ( se tPIgwe1) .  l'base include (1) forntllation ef a mathematical model that 

1s detai led eno** fo r  the particul- application yet  doesn't consume excessive 

b-ogutlng equipment o r  computing t b e ,  ( 2 )  the preealculation and data  &pula- 

t lon  that are necessary t o  transfarm e~igine design infolaation i n t o  a f o r r  sult- 

able t o r  the hybrid computer, (3) the irpplementation of the s iaula t lon on the hy- 

br id  computer, ( 4 )  the evaluation of the almulation model r e l a t ive  t o  a ra i l ab l s  

& a i m  end off-design engle data, (5) the rodif ica t lon o r  the  slmdatlon,  If 

necessary, t o  match the rtfercr.ce data, (6) the documentation of the aPlulat i6a 

and its development t o  f a c f l i t a t e  changes/extensions of t!te slmulation design as 

repulrements and applications change, and (7) r e ~ e t i t i o n  cf the development pra- 

aess f o r  each new engine t o  be studie0. 

This paper addresses these problem an3 offers  a systematic, computer-aided, 

self-documenting aethodology f o r  the development of a hybrld coPrputer simulation 

of a turbofan engine. This methodology represents an extension of e a r l i e r  vork 

(Reference 8) a d d  a t  developing a generalized engine simulation. However, the  

present paper focuses on the turbofan englne configuration and concentrates on 

the automation and documentation of t he  slmulatlon de.elopmnt process. H3nethe- 

lesa, the concepts and computer codes tha t  bave been developed t o  do t h i s  art 

suff ic ient ly  general t o  2e-t t h e i r  adaptatior. t o  sintulations nf other englne 

types. 

This paper describes t he  turbofan engine sodeS and the approach used 50 de- 

velop the hybrid computer slmiiatlon. The organ1za';ion and functions 3f the 

associated computer programs a re  a lso  discussed. A test-case i a  re?resentative 

turbofan engine operating a t  sea-level, s t a t i c  conditions) is used t o  I l l u s t r a t e  

the simulation development process. Typical steady-state and t rans ient  r e su l t s  

from the hybrid computer s i m l a t i o n  are  presented. 

SIMULATION APPROACH 

The proposed simulation dbvelopreent procesa is Z l l ~ s t r a t e d  i n  Figure 2. 9 

host d ig i t a l  pregram, written i n  Fortran, runs cn a sui table  d i g i t a l  corquter ( in  

our caae, the Im 370/3'333). The host program performs a l l  of the afcrementioned 

precalcu1atior.s and data manipulations ( l r rc l~ding scaling of variable$) using 

user-supplied englne design information. The host program then t r i m s  the se l f -  
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contained engine model t o  match the  u s e r s u p p l i e d  besign-.point ptrfornance d a t a  

and, i nadd i t i on ,  providesa  quan t i t a t i ve  measure of each engine contponent aodel 's  

accuracy r e l a t i v e  t o  supplied off-design point  data .  This permlts of f - l ine  eoal- 

uation and refinement of the models using t h e  host program, p r i o r  t o  implearnta- 

t i o n  and operat ion o f  the hybrid simulation. Final ly t he  host  program provides 

a pr in tout  of  a l l  unscaled/acaled engine parameters a.rd punched cards containing 

the hybrid computer set-up Information. 

The t a r g e t  (hybrid) sislulatlon is, o f  course, machine dependent. A s  pre- 

sented, it runs on t h e  Electronic Associates, Inc. (FA11 PACER 600 M b r i d  computer 

system. That system includes a 32K 16-bit d i g i t a l  processor, a 10-volt analog 

processor, and an in t e r f ace  un i t  t h a t  provides c o ~ u n i c a t l o n  between t h e  analog 

aa3 d i g l t a l  machines. The t a r g e t  s imulat ion cons i s t s  of Scaled-Fraction Fortran 

and assembly language rout ines  t h a t  run on the  PACER d i g i t a l  computer and a pre- 

scr ibed analog patching arrangement. The d i g i t a l  rou t ines  (1) s e t  up the  analog 

computer components, Including s e t t i n g  of potentiometers,  (2 )  compute s t a t e  V&F- 

l ab l e  de r iva t ives  using an engine model i d e n t i c a l  t o  t h e  one contained i n  t he  

host program, and ( 3 )  provide p r in tou t s  of  se lec ted  s teady-state  simulation data .  

The analog computer is used, pr imari ly,  f o r  continuous i n t eg ra t ion  of the  s t a t e -  

variable derivat ives.  Ptenty-five arralog-to-digital converters  (ADC's) and 

twenty-one digital-to-analog converters (DAC's) a r e  used t o  t r ans fe r  information 

between the  analog and d i g i t a l  processors. Str ip-chart  recorders  a r e  used t o  

man!-tor and record the  t r ans i en t  behavior of the  simulatlon. 

ENGINE MODEL 

Figure 3 contains a schematic representat ion of the  two-spool, augmented 

turbofan engine t o  be s i m l a t e d .  A s i ng l e  i n l e t  is used t o  supply a i r f low t o  t he  

fan. A i r  leaving the  fan is separated i n t o  two flow streams: one stream passes 

through the engine core while the  o ther  stream passes through an annular bypass 

duct. The fan Is driven by a low-pressure turbine.  The core airf low passes 

through a compressor which is driven by a high-pressure-turbine. Both the  fan 

and compressor a r e  assumed t o  have var iab le  geometry t o  improve aerodynamic Sta- 

b i l i t y  a t  low ro t a t i ona l  speeds. Engine airf low bleeds a r e  a l s o  provided a t  t he  

compressor e x i t  ( s t a t i o n  3) f o r  turbine cooling (flow returned t o  the cycle)  and 

accessory dr ives  (flow l o s t  t o  the  cycle) .  Fuel flow Is in jec ted  i n t o  t he  main 

combustor and burned t o  produce hot gas f o r  dr iv ing  the  turbines.  The engine core 

and bypass streams combine i n  an augmentor duct where addi t iona l  f u e l  is  added t o  

fur ther  increase the gas temperature (hence, t h r u s t ) .  The augmentor flow Is 
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discharged through a var iab le  convergent-divergent nozzle. The nozzle throat 

area ( s t a t i o n  8) and exhaust area ( s t a t i o n  E) can be varied t o  araintaln engine 

a i r f low and t o  minimize drag during augmentor operation. Figure 4 contains a 

computational flow diagram of the  e-.gine model. A l l  symbols are defined in t h e  

Symbol Lis t .  Vide-range, ove ra l l  performance maps are used t o  provide accurate  

steady-state representat ions of t h e  engine's r o t a t i n g  ccrkponents. The e f f e c t s  of 

the variable f an  and compressor geometry on che components1 performance a r e  

accounted t o r  i n  the  model. Factors  such as f l u i d  momentun, mass and energy 

storage,  and r o t o r  i n e r t i a s  are included t o  provide t r ans i en t  capabi l i ty .  

HYBRID COMPUTER PROGRAM 

A n a l o ~  Program 
0- 

The computational s p l i t  between t h e  analog and d i q i t a l  port ions of t h e  hy- 

br id  s imulat ion is weighted heavily toward the  d i g i t a l .  That is,  the  analog 

computer is  l imi ted  t o  doing continuous in tegra t ion  with respect  t o  t i m e  and some 

r e l a t ed  multiplication/division. By comparison, t he  real-time simulat ions devel- 

oped e a r l i e r  (References 1 t o  3) used extensive analog computation with t h e  digi-  

t a l  l imited t o  performing b iva r i a t e  funct ion generation. The decision t o  make 

more use of t h e  d i g i t a l  computer was based on the  des i r e  t o  Improve t h s  steady- 

s t a t e  accuracy of the s i m ~ l a t i o n  and t o  f a c i l i t a t e  t he  automation o r  t h e  simula- 

t i on  development process. 

Scaled values f o r  the engine s t a t e  var iab les  (s tored masses, temperatures, 

duct flow r a t e s ,  and ro to r  speeds) and the  inter-component pressures a r e  computed 

on the  analog computer. Figure 5 i l l u s t r a t e s  t he  analog ca lcu la t ion  of variables 

i n  an intercomponent volume. Iden t i ca l  c i r c u i t r y  i s  patched by the  user  f o r  

each of  t he  s i x  intercomponent volumes. Inputs t o  the  analog from the  d i g i t a l  

a r e  t ransmit ted by 21 DAC1s.  These include the scaled s tored  mass der iva t ives ,  

DWJ, and scaled non-specific temperature der iva t ives ,  DTQUJ, a s  shown i nF igu re5 .  

Outputs from the analog t o  the d i g i t a l  a r e  t ransmit ted by 25 ADC*s.  These in- 

clude the scaled intercomponent pressures and temperatures. S imi la r ly ,  blocks of  

pre-designed c i r c u i t r y  a r e  patched by the  user  f o r  each of the  two ducts and two 

spools i n  the model. 

The analog computer i s  a l so  used co generate ( o r  transmit from externa l  

sources) inputs  t o  the simulation. These include scaled cont ro l  inputs  ( f u e l  

flow, nozzle area,  e t c . )  and scaled f l i g h t  condition inputs  ( a l t i t u d e ,  Mach num- 

ber, and sea-level ambient temperature). 
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Having se lec ted  and patched the  analog components, t h e  user  c ln  i n p u t - t h a  

addresses of  t he  i n t eg ra to r s  and potentlometers t o  t he  host  d i g i t d l  program a d  

have t h e  host  program automatically ccapute t ne  In t eg ra to r  ga ins  and potent ior -  

e t e r  s e t t i ngs .  Pmched cards oontalning these values w i l l  be gsnarated by the 

hoet program and used by the  t a rge t  d i g i t a l  program t o  s e t  up the analog eo- 

nents  ( v i a  the  hybrid In te r face) .  

Dig i ta l  P m ~ r a -  

The t a rge t  d i g i t a l  processor is used t o  perform t h e  bulk of  the  computations 

i n  the  hybrid comi;,irer simulation. That is, the  d i g i t a l  does all of  the  arlth- 

= t i c  and funct ion generation necessary t o  compute t he  time der iva t ives  o f  t h e  

engine s t a t e  variables .  In  addi t ion ,  var iab les  of i n t e r e s t ,  such as net  t h rus t ,  

arc a l s o  computed i n  t he  digi'.al and output t o  t he  analog f o r  di-plag and re- 

cording. Thc d i g l t a l  computer a l so  provides s teady-state  data d lap lsys  and 

automated set-up of the analog computer. 

Fibure 6 shows t!ie s t ruc tu re  and flow of  the  t a rge t  d i g i t a l  program. The 

program ccns i s t s  of a number cf subroutines running under cont ro l  of a main pro- 

gram ca l l ed  EXEC1 (References 9 and 1 C  f .  The major subroutines a r e  INITAL, an 

i r r l t l a l i za t i on  az.3 set-up rout ine,  and LOOP, t he  d i g i t s 1  port ion of the  dynuir  

ensine s inula t ion .  T-NITAL is  executed occc p r i o r  t o  cc t e r lng  the  main dynamic 

loop. LOOP represents  a Scaled--action Fortran implementsrlon of  t he  steady- 

s t a t e  engine model contained In  the  host  program. Scaled versions of the  equa- 

t ions  &f in ing  the  s t a t e  var iab le  der iva t ives  a r e  r epe t i t i ve ly  solved i n  LOOP at  

a f ixed r a t e  se lec ted  by the  user  on the bas is  of (3)  the  time required t o  per- 

form the  ca lcu la t ions  i n  LOOP, and ( 2 )  the  maximum allowable d l g i t a l  delay f o r  

s t a b l e  operation cf the  hybrid simulation. 

The EXECl yrcgram provides a time-shar~,d, in te r rupt  environment i n  which 

the  user  can in te tvac t lve ly  control  s teady-state  and dynamic d isp lays  of d i g i t a l  

data. The subroutine XNEVRM is ca l led  .by EXECl when the  user  depresses a sense 

switch (F) a t  t n e  computer console and i f  the  computations i n  LOOP have been crzm- 

pleted.  If  spare time i e  ava i lab le ,  the user  can obtain d isp lays  of s imulat ion 

data while the program i s  running. The user  can ass ign  alphanumeric names and 

sca l e  f ac to r s  t o  se lec ted  memory loca t ions  and obtain,  upon coaoaand, l i s t i n g s  of  

s i rni lat ion data  i n  engineering un i t s .  This method of  obtaining s teady-state  

r e s u l t s  was used i n  l i e u  of XRITE statements i n  the t a rge t  program. F ina l ly ,  t he  

subroutine LEVEL8 i s  used t o  obtain nap and f u n c t i x  out-of-range information 

during simulation runs. Table I l is ts  the s ign i f i can t   tati is tics f o r  the  t a r g e t  
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promam. The core requirements o f  t h e  bas i c  target p:*ogram a m  only about 7.5 K 

words. Howerer,theaddition of t h e  i n i t i a l i s a t i o n  and set-up rout ine  IRITAL, t he  

HIBCl main program, and their associated subroutine8 (INFOR!¶. etc.1 expands t h e  

t o t a l  t a r g e t  program t o  about 211 K words. The LOOP execution tlme is about 

23 msec with assembly language versions of  s eve ra l  general-purpose subrout2nes 

and i m c t l o n  rout ines  used. 

HOST DIGITAL PROGRM 

The organizat ion and flow of  t he  host  d i g i t a l  program is shown i n  Figure 7. 

The program flow i s  cont ro l led  by the  main program. The main program an4 its 

associated subroutines and funct ion rout ines  read user-supplied input  data and 

operate  on those data  t o  obta in  t h e  information needed t o  s e t  up t h e  target pro- 

gram on the  hybrid computer. Forexample,themain program c a l l s  subroutine MAPIN 

t o  accomplish t h e  reading i n  and sca l ing  o r  component perfomance map data.  A D O  

loop ( I P = l t o  NTOTAL) i s u s e d  t o  read i n  cycle d a t a  f o r  NMTAL se l ec t ed  operat ing 

points.  Tne IP-1 point is assumed t o  be t he  non-augmented (dry) design point .  

If augmented operation is included i n  t h e  ZCtTAL poin ts ,  the  NDRY+l point  is 

assumed t o  be the augmentor design point.  The DCOEF subroutine is  used t o  com- 

pute d i g i t a l  simulation coe f f i c i en t s  and model t r i m  fac tors .  DCOEF Is ca l l ed  

f o r  t h e  IP=l  and IP=NDRY+l operat ing poin ts  only. A t  t he  IP=l  point ,  t he  d i g i t a l  

coe f f i c i en t s  a r e  computed from t h e  input  values of  pressures,  temperatures, flow 

ra tes ,  e t c .  and the  s ca l e  fac tors .  fie! t r i m  f a c t o r s  are then d e t e ~ d n a d  and 

applied t o  pa r t i cu l a r  coe f f i c i en t s  s o  a s  t~ compensate r o r  i n t e rpo la t i on  e r ro r s ,  

e t c .  This produces ( e s sen t i a l l y )  zero de r iva t ives  a t  the  IP=l  design point .  A t  

the  IP-NDRY+l point ,  addi t iona l  t r i m  f a c t o r s  a r e  computed and applied t o  achieve 

a balanced condition i n  t he  augmentor a t  the  maximum th rus t  condition. 

For each spec i f ied  operat ing point ,  the  main program c a l l s  subroutines 

ENGINE, ANALOG,andPRINT. Subroutine ENGINE use& the  trimmed coe f f i c i en t s  and the  

scaled model equations t o  compute scaled values of s t a t e  var iab le  derivat ives.  

A t  off-design poin ts ,no  guarantee of  an equil ibr ium condition e x i s t s .  Therefore, 

ca lcu la t ions  a r e  performed i n  ENGINE t o  obta in  r a t i o s  of Individual  component 

model outputs t o  the output values required t o  achieve the dzs i red  equilibrium 

condition. Non-unity values f o r  these r a t i o s  i nd i ca t e  the  need f o r  modif icat i rns  

t o  the models t o  match the  operat ing l i n e  data .  

The ANALOG subroutine is  used t o  (1)  read i n  engine geometric da taandanalog  

component addresses, ( 2 )  compute analog in t eg ra to r  gains and potentiometer s e t t i ngs ,  
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( 3 )  compute bypass and augmcntor duct model evaluat ion r a t i o s ,  and (4 )  generate 

computer pr in touta  of  all per t inent  ana 3g set-up infommtlon. 

PRINT 1s a multf-purpose output rout ine  t h a t  performs o n e o r t h r e e  funct ions,  

depending on t h e  value of a c a l l i n g  argument IPRINT. IPRINT is l n l t i a l l t e d  t o  

zero i n  the  main progrcllr and is  incremented i n  PRIWTA~ j u s t  a f t e r  each c a l l .  For 

the first c a l l  i n  t he  DO loop, PRINT merely lists the  u s e r s u p p l i e d  opera t ing  

point  data. For t he  s ecmd  c a l l  i n  the  DO loop, PRINT lists a l l  of the sca l ed  

and unscaled var iab les  computed i n  EMGINE. After  t he  f i n a l  c a l l ,  PRINT lists 

d1p::ql coe f f i c i en t s ,  t r i m  f ac to r s ,  and model evaluat ion r a t i o s  and pur~chea the 

dig!tal and analog act-up Cata on cards. Approximately 24 K words are required 

by the  host program. 

RESULTS AND DISCUSSION 

To demonstrate t he  computer-aided simulat ion development process, a t e s t  

case was run. The t e s t  case involved simulat ing a 111.1 KN (25,000 l b f )  t h rus t  

c l a s s  engine operat ing a t  sea-level s t a t i c  condit ions from i d l e  t o  maximumthrust. 

A s  previously described, the  design cha rac t e r i s t i c s  of  the  test-case engine and 

the spec i f i ca t i ons  of the analog components were input  t o  the  host  program. 

Execution of  the  host program resu l ted  i n  t he  generat ion of computer p r in tou t s  

and the punching of a deck of  cards containing the  hybrid computer set-up data .  

Upon riettlng up and executing the  t a r g e t  simulation, it was discovered t h a t  

s tab le ,  closed-loop operat ion of the  simulation uas not poss ib le  with ti?: - - l e  

f ac to r s  much below 50:l. After some study, i t  was concluded t h a t  t h i s  was due t o  

r e l a t i ve ly  high loop gains I n  t he  "hot" s ec t ions  of t he  engine model and the  

e f f ec t ive  time delays associated with those loops. While it was f e l t  t h a t  t h e  

time s c a l e  f a c t o r  could probably be reduced by modifying the  s t ruc tu re  of t h e  

LOOP subroutine (update the  high gain loops more o f t en  than the  o the r s )  it was 

decided not t o  attempt t h i s  and, r a the r ,  t o  concentrate on demonstrating the  

basic  simulation mekhodology. The host and t a rge t  programs could, then, be t h e  

bas is  f o r  l a t e r  work aimed a t  reducing the  d i g i t a l  frame time (23 msec) and 

speeding up the  simulation. 

With the simulation inputs  (potentiometers) f ixed  a t  t h e i r  spec i f ied  values, 

the turbofan engine s imulat ionwas allowed t o  run u n t i l  an equil ibr ium (steady- 

s t a t e )  condition was reached. The INFORM subroutine was then used t o  obtain a 

tabular  l i s t i n g  of unscaled steady-state a t a .  Figure 8 shows a s teady-state  

pr in tout  obtained a t  the i d l e  (lowest t l ~ r u s t )  condition. Note t h a t  t he  unscaled 

data  a r e  displayed a s  XXXXX EE which represents  0.XXXXX times 1 0  t o  the  EE power. 
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Also note t h a t  steady-state e r r o r  r a t i o s  (observed valueldesired value) ore 

l i s t e d  f o r  each variable.  A t  the design point ,  t he  stead$-state errors w e r e  very 

small (0.5 t o  1.0 percent) .  A s  one moved fu r the r  away from t h e  design point ,  

SllghtlJr l a r g e r  e r r o r s  were observed. Ingenera l ,  thesirnulotion produced s t e a m -  

s t a t e  e r r o r s  less than 2.5 percent over *he e u t i r e  sea-level,  s t a t i c  opera t ing  

l ine .  !l'his l e v e l  of accuracy should be acceptable f o r  &st applicat ions.  

While no reference input  da t a  were ava i lab le  f o r  eva lua t ing  t h e  t r ans i en t  

performance of  t he  simWatlon, i t w a s  f e l t  t h a t  i t  w a s  important t o  demonstrate t h e  

t rans ien t  operat ion of  t he  s iau la t lon .  Toavoid t h e  need fo r s imu la t ing  an engine 

c o n t r o l l e r , l t w a s  decided t o  t e s t  t h e  s ~ . i l a t i o n  dynamics i n  an "@pen-loop" 

fashion. To do t h i s ,  tiare h i s t o r i e s  of  t h e  simulation inputs  were constructed 

from representa t ive  engine da ta  and implemented using analog mnc t ion  generators  

driven by a ramp generator  denoting time. Time h i s t o r i e s  were generated for a 

number of  t y p i c a l  engine t r ans i en t s .  Figure 9 shows simulat ion responses t o  a 

cyc l i c  movement o f  the  t h r o t t l e .  I n  a l l  cases, t he  s imulat ion responses were 

s t a b l e  and exhib i ted  reasonable response times, overshoots, e t c .  No analog com- 

ponent overloads o r  scaled-fract ion overflows were observed indica t ing  t h a t  t h e  

se lec ted  sca led  f a c t o r s  and organizat ion of the t a rge t  program colaputations were 

s a t i s f ac to ry .  

CONCLUDING FEWWKS 

The value of hybrid computation a s  a simulation t o o l  has been ap t ly  demon- 

s t r a t c d  i n  a varsety of appl ica t ions  including gas turb ine  engine controls  devel- 

opment. Despite t he  tremendous technological  advances i n  d i g i t a l  computation 

(microprocessrlrs, a r ray  processors, e t c . )  t h e  hybrid computer continues t o  play a 

s i g l f i c a n t  r o l e  i n  simulation because of  the  speed of t he  analog computer and 

t h e  "hacds-onR in t e r ac t ion  ava i lab le  t o  the user.  S t i l l ,  it Is recognized t h a t  

problems e x i s t  when developing hybrid computer simulations and tha t  these  prob- 

lems, If not solved, can significant?.y reduce the  e f fec t iveness  o f  t h e  hybrid 

approach. I n  pa r t i cu l a r ,  programming a i d s  a r c  needed t h a t  can support t he  de- 

velopment, implementation, and dqcumentatian of the  simulation and t h a t  e m e n s u r e  

acceptable l eve l s  of steady-state and dynamic accuracy. 

This paper has focused on the  gas turbine engine simulation problem and haa 

presented a systematic, computer-aided, aelf-documentjng methodology f o r  develop- 

l n g  a hybrld computer s f m u ~ l t i o n  of  an augmented turbofan engine. The proposed 

simulation development process has been exercised, demonstrated, and documented 
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f o r  8 t yp i ca l  turbofan engine design. The r e s u l t s  i nd i ca t e  t h a t  t h e  process daes 

sa t i s fy  mast of the ooject ives.  That is ,  

1. The host / target  program concept does pmvide a aonvenlent means of developing, 

analyzing, and evaluat ing the engine model by using a d i g i t a l  computer (hos t )  

uZthout t i e i n g  ~p the 3ybrid c~mpu te r  ( t a rge t )  during t h e  dev5lopment process. 

2. The inclusion of a scaled turbofan engine model i n  both t he  host  and t a r g e t  

computer proqams minimizes the  need f o r  computer programming (formulating, 

scal ing,  coding, debugging) by the  user.  

3. The self-trimming fea tures  of  t he  host  pxkgram lead t o  a hybrid sislulation 

t h a t  matches user-supplied s teady-state  design point da ta  within I percent and 

matches off-design point  da ta  within 2 t o  3 percent.  

4. The task  of modifying engine subsystem models t o  match off-design point  da ta  

is  simplif ied by having the host  program ca lcu la te  and p r i n t  out t ab l e s  c f  

model evaluat ion r a t i o s .  

5 .  The comFuter subroutines, function rout ines,  and blocks of computer code have 

been ~ e n e r a l i z e d  and should prove valuable i n  construct ing host / target  pro- 

gra.ns f o r  o ther  engine conf igurat ions.  

While t he  bas ic  s:mulation developmtnt methodology has been demonstrated, 

;he goal of applying the concepts t o  real-time engine simulation has not bern 

achieved. However, i t  i s  f e l t  t ha t  the  b?st and t a r g e t  programs tha t  have been 

developed provide an excel lent  vehicle  and opportunity f o r  exploring varioua 

iipproaches t o  r educ ing thed lg i t a l  frame timeand the  time sca l e  f a c t o r  (cur ren t ly  

50:l). Preliminary, r e s u l t s  from s tudies  deal ing with more frequent updates of 

high gain loops i n  LOOP ind ica te  t ha t  20:l time sca l e  i r  ~ c h i e v a b l e  without 

a f f ec t ing  the basic ergine model. Other p o s s i b i l i t i e s  t h a t  should be explored 

include: replacing b iva r i a t e  t ab l e  lockups with ana ly t ic  funct icns,  rev is ing  the  

s p l i t  between analog and d i g i t a l  computation, and introducing o ther  forms of  

p a r a l l e l  processing. Again, the ex i s t i ng  host and t a r g e t  computer programs 

should prove t o  be valuable too ls  i n  performhg these s tudies  and documenting the 

r e su l t s .  Further d e t a i l s  and documentation of the  host and t a rge t  computer pro- 

grams a re  ava i lab le  from the  authors upon request.  

SYMBOL LIST 

A cross-sectional a rea ,  sq cm (sq i n )  

ALT a l t i t u d e ,  m ( f t )  

DTQWj 'caled non-specific temperature derivat ive a t  s t a t i o n  j 

D w j  scaled s tored  mass derivat ive a t  s t a t i o n  j 
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F th rus t ,  N ( l b f  ) 

IP 

IPRINT 

NDRY 

NTOTAL 

Ah 

N 

N 

P 

a 

i n t ege r  index 

in t ege r  .rgument f o r  subroutine PRWT 

number of non-augatanted operat ing poin ts  input  t o  hoat program 

t o t a l  numbw. of operat ing poin ts  input  t o  host  program 

enthalpy change, J/kg (Btu/lbm) 

Mach number 

ro t a t i ona l  speed, rpm 

t o t a l  pressure, N/sq at (ps ia )  

torque, N-cm (in-lbf ) 

SFx sca le  f a c t o r  on var iab le  x, appropriate  units 

T t o t a l  temperature, K (OR) 

t update time, sec 

t time, sec  

V volume, cu cm (cu i n )  

W s tored  mass, kg (lbm) 

w mass flow r a t e ,  kg/sec (lbm/sec) 

SubScr i~ tS  : 

AB aueprlen t or  

am ambient 

BLHT high-pressure-turbine cooling bleed 

B U T  low-pressure-turblne cooling bleed 

BLOV overboard bleed 

C compressor 

E nozzle e x i t  plane 

P f u e l  

PAN f an  

I! high-pressure-spool 

HT hi&-pressure-turbine 

I D  fan hub 

J s t a t i o n  (see Figure 21, J=0,2,2.1,2.2,~,4,4.1s5~6,7,8,13,16 

,I1 entrance t o  volume a t  s t a t l o n  j (see F l w e  31, J=3,7,13 

L low-pressure-spool 

LT low-pressure-turbine 

N noezle 

OD fan t i p  

Note - subscr ip ts  may be combined (example, w p S 4 )  
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TABLE I. - TARGET PROGRAM STATISTICS 

Analog Program I n t e r f a c e  --- D i g i t a l  P r ~ n r a m  

16 I n t e g r a t o r s  25 A D C P s  Basic program - 7487 words 

19 Summers 21 D A C t s  To ta l  program - 23,825 words 

6 M u l t i p l i e r s  2 Control l i n e s  LOOP execut ion time - 23.0 msec 

2 X* 3 Sense l i n e s  

8 Dividers  1 General pur3:lose 
i n t e r r u p t  

53 Potent iometers  1 Real-time :lock 

10 Function r e l a y s  

4 "AND" g a t e s  

1 BCD counter 

1 Logic pushbutton 
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