59 research outputs found

    Coeliac disease: from triggering factors to treatment

    Get PDF
    Coeliac disease (CD) or gluten sensitive enteropathy is one of the most common inflammatory diseases of the small intestine with estimated prevalence of 1% in the population. Its incidence is increasing and seems to be higher than expected in the pediatric population associated with unfavorable impact on the quality of life. The aim of the present review is to highlight the main triggering factors leading to the development of CD and its pathomechanism with a special outlook to the recent therapeutic approaches

    Involvement of heat shock proteins in gluten-sensitive enteropathy

    Get PDF
    Gluten-sensitive enteropathy, also known as coeliac disease (CD), is an autoimmune disorder occurring in genetically susceptible individuals that damages the small intestine and interferes with the absorption of other nutrients. As it is triggered by dietary gluten and related prolamins present in wheat, rye and barley, the accepted treatment for CD is a strict gluten-free diet. However, a complete exclusion of gluten-containing cereals from the diet is often difficult, and new therapeutic strategies are urgently needed. A class of proteins that have already emerged as drug targets for other autoimmune diseases are the heat shock proteins (HSPs), which are highly conserved stress-induced chaperones that protect cells against harmful extracellular factors. HSPs are expressed in several tissues, including the gastrointestinal tract, and their levels are significantly increased under stress circumstances. HSPs exert immunomodulatory effects, and also play a crucial role in the maintenance of epithelial cell structure and function, as they are responsible for adequate protein folding, influence the degradation of proteins and cell repair processes after damage, and modulate cell signalling, cell proliferation and apoptosis. The present review discusses the involvement of HSPs in the pathophysiology of CD. Furthermore, HSPs may represent a useful therapeutic target for the treatment of CD due to the cytoprotective, immunomodulatory, and anti-apoptotic effects in the intestinal mucosal barrier

    Fibrosis related inflammatory mediators: Role of the IL-10 cytokine family

    Get PDF
    Importance of chronic fibroproliferative diseases (FDs) including pulmonary fibrosis, chronic kidney diseases, inflammatory bowel disease, and cardiovascular or liver fibrosis is rapidly increasing and they have become a major public health problem. According to some estimates about 45% of all deaths are attributed to FDs in the developed world. Independently of their etiology the common hallmark of FDs is chronic inflammation. Infiltrating immune cells, endothelial, epithelial, and other resident cells of the injured organ release an orchestra of inflammatory mediators, which stimulate the proliferation and excessive extracellular matrix (ECM) production of myofibroblasts, the effector cells of organ fibrosis. Abnormal amount of ECM disturbs the original organ architecture leading to the decline of function. Although our knowledge is rapidly expanding, we still have neither a diagnostic tool to detect nor a drug to specifically target fibrosis. Therefore, there is an urgent need for the more comprehensive understanding of the pathomechanism of fibrosis and development of novel diagnostic and therapeutic strategies. In the present review we provide an overview of the common key mediators of organ fibrosis highlighting the role of interleukin-10 (IL-10) cytokine family members (IL-10, IL-19, IL-20, IL-22, IL-24, and IL-26), which recently came into focus as tissue remodeling-related inflammatory cytokines

    A Th17 sejtek szerepe rheumatoid arthritisben

    Get PDF
    Th17 cells are the newly described subset of the CD4 + T lymphocytes. Activated Th17 cells are characterized by their ability to produce IL-17A and other pro-inflammatory cytokines. IL-17A regulates immune function through its cell- surface receptor expressed on epithelial-and endothelial cells, fibroblasts and leukocytes by promoting neutrophil recruitment and releasing further pro-inflammatory mediators. Failures of the susceptible balance of the immunoregulation may lead to unchecked immune response and autoimmune diseases. The central role of Th17 cells and cytokines produced by Th17 cells were confirmed in a wide variety of human autoimmune diseases, including rheumatoid arthritis. Recently Th17 cells and its cytokines come into the focus of immunological research as potential therapeutic targets

    Specific MicroRNA Pattern in Colon Tissue of Young Children with Eosinophilic Colitis

    Get PDF
    Eosinophilic colitis (EC) is a common cause of haematochezia in infants and young children. The exact pathomechanism is not understood, and the diagnosis is challenging. The role of microRNAs as key class of regulators of mRNA expression and translation in patients with EC has not been explored. Therefore, the aim of the present study was to explore the miRNA profile in EC with respect to eosinophilic inflammation. Patients enrolled in the study (n = 10) had persistent rectal bleeding, and did not respond to elimination dietary treatment. High-throughput microRNA sequencing was carried out on colonic biopsy specimens of children with EC (EC: n = 4) and controls (C: n = 4) as a preliminary screening of the miRNA profile. Based on the next-generation sequencing (NGS) results and literature data, a potentially relevant panel of miRNAs were selected for further measurements by real-time reverse transcription (RT)-PCR (EC: n = 14, C: n = 10). Validation by RT-PCR resulted in significantly altered expression of miR-21, -31, -99b, -125a, -146a, -184, -221, -223, and -559 compared to controls (p </= 0.05). Elevation in miR-21, -99b, -146a, -221, and -223 showed statistically significant correlation to the extent of tissue eosinophilia. Based on our results, we conclude that the dysregulated miRNAs have a potential role in the regulation of apoptosis by targeting Protein kinase B/Mechanistic target of rapamycin (AKT/mTOR)-related pathways in inflammation by modulating Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB)-related signalling and eosinophil cell recruitment and activation, mainly by regulating the expression of the chemoattractant eotaxin and the adhesion molecule CD44. Our results could serve as a basis for further extended research exploring the pathomechanism of EC

    Role of the Microbiome in Celiac Disease

    Get PDF
    Microbiome is the community of commensal, symbiotic and pathogenic microorganism that share our human body space. Intestinal microbiota has a defensive role in human health, it is implicated in metabolic and nutritional processes and plays an important role in the pathophysiology of several diseases. In recent years special attention has been paid to investigations targeting the changes of intestinal microbiome in various gastrointestinal disorders including inflammatory bowel disease, infectious colitis and celiac disease (CD). The aim of our present review is to summarize the role of the microbiome in CD and the changes of its composition in the intestine of patients suffering from CD

    Intestinal alkaline phosphatase in the colonic mucosa of children with inflammatory bowel disease

    Get PDF
    AIM: To investigate intestinal alkaline phosphatase (iAP) in the intestinal mucosa of children with inflammatory bowel disease (IBD). METHODS: Colonic biopsy samples were taken from 15 newly diagnosed IBD patients and from 10 healthy controls. In IBD patients, specimens were obtained both from inflamed and non-inflamed areas. The iAP mRNA and protein expression was determined by reverse transcription-polymerase chain reaction and Western blotting analysis, respectively. Tissue localization of iAP and Toll-like receptor (TLR) 4 was investigated by immunofluorescent staining. RESULTS: The iAP protein level in the inflamed mucosa of children with Crohn's disease (CD) and ulcerative colitis (UC) was significantly decreased when compared with controls (both P < 0.05). Similarly, we found a significantly decreased level of iAP protein in the inflamed mucosa in CD compared with non-inflamed mucosa in CD (P < 0.05). In addition, the iAP protein level in inflamed colonic mucosa in patients with UC was decreased compared with non-inflamed mucosa in patients with CD (P < 0.05). iAP protein levels in the non-inflamed mucosa of patients with CD were similar to controls. iAP mRNA expression in inflamed colonic mucosa of children with CD and UC was not significantly different from that in non-inflamed colonic mucosa with CD. Expression of iAP mRNA in patients with non-inflamed mucosa and in controls were similar. Co-localization of iAP with TLR4 showed intense staining with a dotted-like pattern. iAP was present in the inflamed and non-inflamed mucosa of patients with CD, UC, and in control biopsy specimens, irrespective of whether it was present in the terminal ileum or in the colon. However, the fluorescent signal of TLR4 was more pronounced in the colon compared with the terminal ileum in all groups studied. CONCLUSION: Lower than normal iAP protein levels in inflamed mucosa of IBD patients may indicate a role for iAP in inflammatory lesions in IBD. Based on our results, administration of exogenous iAP enzyme to patients with the active form of IBD may be a therapeutic option

    Microarray Analysis Reveals Increased Expression of Matrix Metalloproteases and Cytokines of Interleukin-20 Subfamily in the Kidneys of Neonate Rats Underwent Unilateral Ureteral Obstruction: A Potential Role of IL-24 in the Regulation of Inflammation and Tissue Remodeling

    Get PDF
    Background/Aims: Congenital obstructive nephropathy (CON) is the main cause of pediatric chronic kidney diseases leading to renal fibrosis. High morbidity and limited treatment opportunities of CON urge the better understanding of the underlying molecular mechanisms. Methods: To identify the differentially expressed genes, microarray analysis was performed on the kidney samples of neonatal rats underwent unilateral ureteral obstruction (UUO). Microarray results were then validated by real-time RT-PCR and bioinformatics analysis was carried out to identify the relevant genes, functional groups and pathways involved in the pathomechanism of CON. Renal expression of matrix metalloproteinase (MMP)-12 and interleukin (IL)-24 were evaluated by real-time RT-PCR, flow cytometry and immunohistochemical analysis. Effect of the main profibrotic factors on the expression of MMP-12 and IL-24 was investigated on HK-2 and HEK-293 cell lines. Finally, the effect of IL-24 treatment on the expression of pro-inflammatory cytokines and MMPs were tested in vitro. Results: Microarray analysis revealed 880 transcripts showing &#x3e;2.0-fold change following UUO, enriched mainly in immune response related processes. The most up-regulated genes were MMPs and members of IL-20 cytokine subfamily, including MMP-3, MMP-7, MMP-12, IL-19 and IL-24. We found that while TGF-β treatment inhibits the expression of MMP-12 and IL-24, H2O2 or PDGF-B treatment induce the epithelial expression of MMP-12. We demonstrated that IL-24 treatment decreases the expression of IL-6 and MMP-3 in the renal epithelial cells. Conclusions: This study provides an extensive view of UUO induced changes in the gene expression profile of the developing kidney and describes novel molecules, which may play significant role in the pathomechanism of CON
    corecore